On the Distribution Modulo 1 of the Sequence <i>αn</i><sub>2</sub> + <i>βn</i>

Type: Article

Publication Date: 1977-08-01

Citations: 8

DOI: https://doi.org/10.4153/cjm-1977-084-8

Abstract

Dirichlet's Theorem says that for any real α and for N ≧ 1, there exists a natural n ≦ N with where || || denotes the distance to the nearest integer. Heilbronn [ 2 ], improving estimates of Vinogradov [ 3 ], showed that for α, N as above and for ϵ ≧ 0, there exists an n ≦ N with

Locations

  • Canadian Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the Distribution of the Sequence <i>n<sup>2</sup>θ</i> (mod 1) 1987 John Friedlander
Henryk Iwaniec
+ PDF Chat On the distribution of <i>αp</i><sup>k</sup> modulo 1 1997 Kieh Wong
+ On the Distribution of <i>αp</i> Modulo One II 1996 Glyn Harman
+ PDF Chat On the distribution modulo 1 of the sequence $αn^3 + βn^2 + γn$ 1981 R. D. Baker
+ On the distribution of <i>αp</i> modulo 1 1977 R. C. Vaughan
+ PDF Chat On the Distribution of the Sequence {<i>n</i>d*(<i>n</i>)} 1989 H. L. Abbott
M. V. Subbarao
+ The Distribution of <i>αp</i> <sup>2</sup> Modulo 1 1981 Amit Ghosh
+ On the distribution modulo 1 of the values of $F(n)+\alpha\sigma(n)$ 2005 Jean-Marie De Koninck
И. Катаи
+ PDF Chat On the fractional parts of α<i>n</i><sup>2</sup> and β<i>n</i> 1981 Roger C. Baker
+ On the Distribution of αp; Modulo One 1983 Glyn Harman
+ PDF Chat On the distribution of prime numbers of the form [<i>n</i><sup><i>c</i></sup>] 1999 Angel Kumchev
+ On the distribution of √ <i>p</i> modulo one 1983 Glyn Harman
+ On Positive Numbers <i>n</i> for Which Ω( <i>n</i> ) Divides <i> F <sub>n</sub> </i> 2003 Florian Luca
+ On the Distribution of <i>l</i> -th Power Residues (mod <i>p</i> ) 1932 H. Davenport
+ On the distribution of powers of real numbers modulo 1 2014 Simon Baker
+ PDF Chat On a Theorem of Heilbronn Concerning the Fractional Part of <i>θn</i><sup>2</sup> 1970 Ming-Chit Liu
+ On the distribution of αp modulo one (II) 2000 Chaohua Jia
+ On the divisor function <i>d</i> ( <i>n</i> ): II 1999 Jiahai Kan
Zun Shan
+ PDF Chat On Sequences {<i>ξt<sub>n</sub></i>(mod 1)} 1975 E Strzelecki
+ On the Numbers of the Form <i>an</i> <sup>2</sup> + <i>bn</i> 1984 Shiro Ando

Works Cited by This (0)

Action Title Year Authors