Permutations Mod <i>m</i> in the Form <i>x</i><sup><i>n</i></sup>

Type: Article

Publication Date: 1976-01-01

Citations: 2

DOI: https://doi.org/10.1080/00029890.1976.11994033

Locations

  • American Mathematical Monthly - View

Similar Works

Action Title Year Authors
+ Primes of the form [<i>n</i><sup><i>c</i></sup>] 1985 Grigori Kolesnik
+ The Fibonacci Sequence <i>F</i> <sub> <i>n</i> </sub> Modulo <i>L</i> <sub> <i>m</i> </sub> 1983 Karolyn A. Morgan
+ Exploring Fibonacci Numbers Mod <i>M</i> 1996 Jack Ryder
+ Fibonacci Numbers of the Form <i>x</i> <sup> <i>a</i> </sup> ± <i>x</i> <sub> <i>b</i> </sub> ± 1 2014 Shanta Laishram
Florian Luca
+ Combinatorial Numbers in ₵ <i> <sup>n</sup> </i> 1976 Selmo Tauber
+ ON THE NUMBER OF<i>A</i>-PERMUTATIONS 1990 A. L. Yakymiv
+ Sums of integers of the form <i>x</i><sup>2</sup> + <i>xy</i> + <i>y</i><sup>2</sup> 2010 Kenneth S. Williams
+ PDF Chat Bits, matrices and 1/<i>N</i> 2003 Herman Verlinde
+ <i>π</i> In Terms of <i>ϕ</i> 2006 Hei-Chi Chan
+ On the integers $x_i$ for which $x_i\mid x_1\dots x_{i-1}x_i\dots x_n+1$ holds 1978 J. Janák
Ladislav Skula
+ The Fibonacci Ratios <i>F</i> <sub> <i>k</i> +1 </sub> / <i>F</i> <sub> <i>k</i> </sub> Modulo <i>p</i> 1975 Lawrence Somer
+ Another Proof that <i>ϕ</i> ( <i> F <sub>n</sub> </i> ) ≡ 0 MOD 4 for all <i>n</i> &gt; 4 1980 Verner E. Hoggatt
Hugh M. Edgar
+ Factoring Factorial <i>n</i> 1998 Richard K. Guy
J. L. Selfridge
+ A Generating Function for σ<i><sub>k</sub></i>(<i>n</i>) 1959 V. C. Harris
Leroy J. Warren
+ Higher-Order Fibonacci Sequences Modulo <i>M</i> 1986 Derek Chang
+ PDF Chat A representation of the Bernoulli number<i>B</i><sub><i>n</i></sub> 1964 Nand Kishore
+ The Factorization of <i>x</i><sup>5</sup> ± <i>x</i> + <i>n</i> 1988 Stanley Rabinowitz
+ Polynomials <i>P</i> <sub> <i>2n+1</i> </sub> ( <i>x</i> ) Satisfying <i>P</i> <sub> <i>2n+1</i> </sub> ( <i>F</i> <sub> <i>k</i> </sub> ) = <i>F</i> <sub> ( <i>2n+l</i> ) <i>k</i> </sub> 1976 David G. Beverage
+ The Groups G<sub>2</sub>(<i>q</i>) 2005 James E. Humphreys
+ <i>q</i>-Continued Fractions 2017