Caution on emergent continuous symmetry: A Monte Carlo investigation of the transverse-field frustrated Ising model on the triangular and honeycomb lattices

Type: Article

Publication Date: 2017-09-29

Citations: 37

DOI: https://doi.org/10.1103/physrevb.96.115160

Abstract

Continuous symmetries are believed to emerge at many quantum critical points in frustrated magnets. In this work, we study two candidates of this paradigm: the transverse-field frustrated Ising model (TFFIM) on the triangular and the honeycomb lattices. The former is the prototypical example of this paradigm, and the latter has recently been proposed as another realization. Our large-scale Monte Carlo simulation confirms that the quantum phase transition (QPT) in the triangular lattice TFFIM indeed hosts an emergent O(2) symmetry, but that in the honeycomb lattice TFFIM is a first-order QPT and does not have an emergent continuous symmetry. Furthermore, our analysis of the order-parameter histogram reveals that such different behavior originates from the irrelevance and relevance of anisotropic terms near the QPT in the low-energy effective theory of the two models. The comparison between theoretical analysis and numerical simulation in this work paves the way for scrutinizing investigation of emergent continuous symmetry at classical and quantum phase transitions.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Phase diagram of the quantum Ising model on a triangular lattice under external field 2021 Yuan Da Liao
Han Li
Zheng Yan
Haotian Wei
Wei Li
Yang Qi
Zi Yang Meng
+ PDF Chat Experimental realization of the ground state for the antiferromagnetic Ising model on a triangular lattice 2025 Ke Wang
Xingjian Liu
Li-Ming Tu
Jiajie Zhang
V. N. Gladilin
Jun‐Yi Ge
+ Emergent Rokhsar-Kivelson point in realistic quantum Ising models 2021 Zheng Zhou
Zheng Yan
Changle Liu
Yan Chen
Xue‐Feng Zhang
+ PDF Chat Quantum robustness of the toric code in a parallel field on the honeycomb and triangular lattice 2024 V. Kott
Matthias MĂŒhlhauser
Jan Alexander Koziol
K. P. Schmidt
+ Emergent Symmetry in Quantum Phase Transitions: From Deconfined Quantum Critical Point to Gapless Quantum Spin Liquid 2022 Wenyuan Liu
Shou-Shu Gong
Wei-Qiang Chen
Zheng-Cheng Gu
+ PDF Chat Study on Frustrated Quantum Phase Transition Achievable by Quantum Computing 2024 Zili Chen
+ Pattern Description of Quantum Phase Transitions in the Transverse Antiferromagnetic Ising Model with a Longitudinal Field 2023 Yun-Tong Yang
Hong‐Gang Luo
+ PDF Chat Gapless symmetry-protected topological phase of quantum antiferromagnets on anisotropic triangular strip 2022 Yuichiro Hidaka
Shunsuke C. Furuya
Atsushi Ueda
Yasuhiro Tada
+ PDF Chat Monte Carlo study of frustrated Ising model with nearest- and next-nearest-neighbor interactions in generalized triangular lattices 2024 Hoseung Jang
Unjong Yu
+ PDF Chat Frustrated honeycomb-lattice bilayer quantum antiferromagnet in a magnetic field: Unconventional phase transitions in a two-dimensional isotropic Heisenberg model 2017 Taras Krokhmalskii
Vasyl Baliha
Oleg Derzhko
Jörg Schulenburg
Johannes Richter
+ PDF Chat Quantum Phase Diagram of the Triangular-Lattice<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>X</mml:mi><mml:mi>X</mml:mi><mml:mi>Z</mml:mi></mml:mrow></mml:math>Model in a Magnetic Field 2014 Daisuke Yamamoto
Giacomo Marmorini
Ippei Danshita
+ PDF Chat Monte Carlo study of frustrated Ising model with nearest- and next-nearest-neighbor interactions in generalized triangular lattices 2024 Hoseung Jang
Unjong Yu
+ Quantum phase transitions in the triangular coupled-top model 2022 Liwei Duan
Yanzhi Wang
Qing-Hu Chen
+ Phase Transitions with Discrete Symmetry Breaking in Antiferromagnetic Heisenberg Models on a Triangular Lattice 2013 Ryo Tamura
Shu Tanaka
Naoki Kawashima
+ PDF Chat Quantum Criticality of Two-Dimensional Quantum Magnets with Long-Range Interactions 2019 Sebastian Fey
Sebastian C. Kapfer
K. P. Schmidt
+ PDF Chat Phase Transitions with Discrete Symmetry Breaking in Antiferromagnetic Heisenberg Models on a Triangular Lattice 2014 Ryo Tamura
Shu Tanaka
Naoki Kawashima
+ Stability and fine structure of symmetry-enriched quantum criticality in a spin ladder triangular model 2023 Xiao Wang
Linhao Li
Jianda Wu
+ Quantum tricriticality of incommensurate phase induced by quantum domain walls in frustrated Ising magnetism 2020 Zheng Zhou
Dongxu Liu
Zheng Yan
Yan Chen
Xuefeng Zhang
+ PDF Chat Quantum phase transitions in the triangular coupled-top model 2023 Liwei Duan
Yanzhi Wang
Qing-Hu Chen
+ PDF Chat Fully-frustrated octahedral antiferromagnet: emergent complexity in external field 2025 A. S. Gubina
T. Ziman
M. E. Zhitomirsky

Works That Cite This (30)

Action Title Year Authors
+ PDF Chat Itinerant quantum critical point with frustration and a non-Fermi liquid 2018 Zi Hong Liu
Xiao Yan Xu
Yang Qi
Kai Sun
Zi Yang Meng
+ PDF Chat Dynamical generation of topological masses in Dirac fermions 2018 Yuan-Yao He
Xiao Yan Xu
Kai Sun
Fakher F. Assaad
Zi Yang Meng
Zhong-Yi Lu
+ PDF Chat Elective-momentum ultrasize quantum Monte Carlo method 2019 Zi Hong Liu
Xiao Yan Xu
Yang Qi
Kai Sun
Zi Yang Meng
+ PDF Chat Ground states and dynamical properties of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> quantum Heisenberg model on the 1/5-depleted square lattice 2022 Jun-Han Huang
Zenan Liu
Han-Qing Wu
Dao‐Xin Yao
+ PDF Chat Observation of topological phenomena in a programmable lattice of 1,800 qubits 2018 Andrew D. King
Juan Carrasquilla
Jack Raymond
Isil Ozfidan
Evgeny Andriyash
A. J. Berkley
MaurĂ­cio Sedrez dos Reis
T. Lanting
R. Harris
Fabio Altomare
+ Efficient quantum state tomography with mode-assisted training 2022 Yuanhang Zhang
Massimiliano Di Ventra
+ PDF Chat Magic in generalized Rokhsar-Kivelson wavefunctions 2024 Poetri Sonya Tarabunga
Claudio Castelnovo
+ PDF Chat Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4 2020 Han Li
Yuan Da Liao
Bin-Bin Chen
Xu-Tao Zeng
Xian‐Lei Sheng
Yang Qi
Zi Yang Meng
Wei Li
+ PDF Chat Intrinsic quantum Ising model on a triangular lattice magnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Tm</mml:mi><mml:mi>Mg</mml:mi><mml:mi>Ga</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> 2020 Changle Liu
Chun-Jiong Huang
Gang Chen
+ Fully packed quantum loop model on the triangular lattice: Hidden vison plaquette phase and cubic phase transitions 2022 Yan Zheng
Xiaoxue Ran
Yan-Cheng Wang
Rhine Samajdar
Junchen Rong
Subir Sachdev
Qi Yang
Zi Yang Meng

Works Cited by This (26)

Action Title Year Authors
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>topological liquid of hard-core bosons on a kagome lattice at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math>filling 2015 Krishanu Roychowdhury
Subhro Bhattacharjee
Frank Pollmann
+ PDF Chat Coulomb Liquid Phases of Bosonic Cluster Mott Insulators on a Pyrochlore Lattice 2015 Jian-Ping Lv
Gang Chen
Youjin Deng
Zi Yang Meng
+ PDF Chat Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm 2004 T. Senthil
Leon Balents
Subir Sachdev
Ashvin Vishwanath
Matthew P. A. Fisher
+ PDF Chat Interplay of quantum and thermal fluctuations in a frustrated magnet 2003 Sergei V. Isakov
Roderich Moessner
+ Collective Monte Carlo Updating for Spin Systems 1989 Ulli Wolff
+ PDF Chat Pyrochlore photons: The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo><mml:mn /></mml:math>spin liquid in a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:math>three-dimensional frustrated magnet 2004 Michael Hermele
Matthew P. A. Fisher
Leon Balents
+ Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model with Four-Spin Interactions 2007 Anders W. Sandvik
+ Finite size effects at thermally-driven first order phase transitions: A phenomenological theory of the order parameter distribution 1993 Katharina Vollmayr
J. D. Reger
Manfred Scheucher
Kurt Binder
+ PDF Chat The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> loop model on a three-dimensional lattice 2012 Qingquan Liu
Youjin Deng
Timothy M. Garoni
Henk W. J. Blöte
+ PDF Chat Universal Signatures of Fractionalized Quantum Critical Points 2012 Sergei V. Isakov
Roger G. Melko
Matthew B. Hastings