Formulation of the relativistic quantum Hall effect and parity anomaly

Type: Article

Publication Date: 2016-06-13

Citations: 9

DOI: https://doi.org/10.1103/physrevb.93.235122

Abstract

We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the ``parity anomaly.'' In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Coherent and Unified Single Particle Description of the Integer and Fractional Quantum Hall Effects 2021 C. S. Unnikrishnan
+ An analogy of the quantum hall conductivity in a Lorentz-symmetry violation setup 2012 Leandro Rodrigo Ribeiro
C. Furtado
E. Passos
+ Theoretical basis for the unification of the integer and the fractional quantum Hall effects 2011 Long Shu-ming
Jianhua Wang
Kang Li
Yi Yuan
+ PDF Chat Quantum theory of the Hall effect 1997 F. Ghaboussi
+ PDF Chat Anisotropic pseudopotential characterization of quantum Hall systems under a tilted magnetic field 2017 Bo Yang
Ching Hua Lee
Chi Zhang
Zi-Xiang Hu
+ PDF Chat Unification of Laughlin and Mooreā€“Read states in SUSY quantum Hall effect 2007 Kazuki Hasebe
+ PDF Chat The noncommutative quantum Hall effect with anomalous magnetic moment in three different relativistic scenarios 2023 Robson Ramos Oliveira
G. Alencar
R. R. Landim
+ PDF Chat Hyperspherical Slater determinant approach to few-body fractional quantum Hall states 2017 Bin Yan
Rachel Wooten
K. M. Daily
Chris H. Greene
+ PDF Chat Spinā€“Orbit Interaction Enhanced Fractional Quantum Hall States in the Second Landau Level 2010 Toru Ito
Kentaro Nomura
Naokazu Shibata
+ Common physical mechanism for integer and fractional quantum Hall effects 2011 Jianhua Wang
Kang Li
Long Shu-ming
Yi Yuan
+ Toward a new theory of the fractional quantum Hall effect: The many-body spectra and energy gaps at $Ī½<1$ 2023 Sergey A. Mikhailov
+ Massless Dirac-like fermions under external fields: a nonminimal coupling approach 2016 Edgar Marcelino
E. S. Santos
Roberto Rivelino
+ PDF Chat Quantum Hall Effect and Langlands Program 2018 Kazuki Ikeda
+ Giant quantum correction to the anomalous Hall effect 2019 Shuai Yang
Zhilin Li
Chaojing Lin
Changjiang Yi
Youguo Shi
Dimitrie Culcer
Yongqing Li
+ An exact expression of the collective excitation energy gap of fractional quantum Hall effect 1996 Yu-Liang Liu
+ PDF Chat Infinite symmetry in the quantum Hall effect 1993 Andrea Cappelli
Carlo A. Trugenberger
Guillermo R. Zemba
+ PDF Chat The quantum Hall effects: Philosophical approach 2015 P. Lederer
+ Thermodynamic properties of the noncommutative quantum Hall effect with anomalous magnetic moment 2023 Robson Ramos Oliveira
R. R. Landim
+ PDF Chat The Dirac composite fermion of the fractional quantum Hall effect 2016 D. Son
+ Unexpectedly Large Quasiparticles Charge in the Fractional Quantum Hall Effect 2009 M. Dolev
Y. Gross
Yunchul Chung
Moty Heiblum
V. Umansky
D. Mahalu

Works Cited by This (18)

Action Title Year Authors
+ PDF Chat Topological field theory of time-reversal invariant insulators 2008 Xiaoā€Liang Qi
Taylor L. Hughes
Shou-Cheng Zhang
+ PDF Chat Landau Quantization of Topological Surface States in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Se</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2010 Peng Cheng
Canā€Li Song
Tong Zhang
Yanyi Zhang
Yilin Wang
Jin-Feng Jia
Jing Wang
Yayu Wang
Bang-Fen Zhu
Xi Chen
+ PDF Chat Excitation gaps in fractional quantum Hall states: An exact diagonalization study 2002 R. Morf
N. dā€™Ambrumenil
S. Das Sarma
+ PDF Chat Quantum Hall effect on top and bottom surface states of topological insulator (Bi1āˆ’xSbx)2Te3 films 2015 Ryutaro Yoshimi
Atsushi Tsukazaki
Yusuke Kozuka
Joseph Falson
Kei Takahashi
J. G. Checkelsky
Naoto Nagaosa
M. Kawasaki
Yoshinori Tokura
+ PDF Chat Fractional quantum Hall effect in graphene 2006 Csaba Tőke
Paul E. Lammert
Vincent H. Crespi
J. K. Jain
+ PDF Chat Modeling disorder in graphene 2008 Vitor M. Pereira
J. M. B. Lopes dos Santos
A. H. Castro Neto
+ Note on the Bondi-Metzner-Sachs Group 1966 Ezra T. Newman
Roger Penrose
+ PDF Chat Electronic transport in two-dimensional graphene 2011 S. Das Sarma
Shaffique Adam
E. H. Hwang
Enrico Rossi
+ PDF Chat Quantum Hall Ferromagnetism in Graphene 2006 Kentaro Nomura
A. H. MacDonald
+ PDF Chat First direct observation of Dirac fermions in graphite 2006 Shuyun Zhou
G.-H. Gweon
J. Graf
Š. Š’. Š¤ŠµŠ“Š¾Ń€Š¾Š²
Catalin D. Spataru
Renee D. Diehl
Y. Kopelevich
D.-H. Lee
Steven G. Louie
Alessandra Lanzara