The level crossing problem in semi-classical analysis. II. The Hermitian case

Type: Article

Publication Date: 2004-01-01

Citations: 37

DOI: https://doi.org/10.5802/aif.2054

Abstract

Cet article est la seconde partie de l'article «The level crossing problem in semi-classical analysis I. The symmetric case» (Annales de l'Institut Fourier, volume en l'honneur de Frédéric Pham). Nous considérons ici le cas où la matrice de dispersion est hermitienne.

Locations

  • French digital mathematics library (Numdam) - View - PDF
  • Annals of the Fourier Institute (Institut Fourier) - View - PDF
  • Annales de l’institut Fourier - View - PDF

Similar Works

Action Title Year Authors
+ Riemann-Type Problem in Hermitian Clifford Analysis 2018 Longfei Gu
+ Clifford analysis in the Hermitian setting 2005 Frank Sommen
+ The hermitian representation of the complex coordinate method: Theory and application 2008 Nimrod Moiseyev
+ A variational principle for eigenvalues of pencils of Hermitian matrices 1999 Paul Binding
Branko Najman
Qiang Ye
+ Operator Theory for Complex and Hypercomplex Analysis 1998 E. Ramírez de Arellano
N. Salinas
Michael Shapiro
Nikolai Vasilevski
+ COMPLEX ORTHOGONALITY ON THE SEMICIRCLE WITH RESPECT TO GEGENBAUER WEIGHT: THEORY AND APPLICATIONS 2007 Gradimir V. Milovanović
+ Fundamental concepts of the spectral theory of Hermitian operators 1967 A. I. Plesner
+ HILBERT-DIRAC OPERATORS IN CLIFFORD ANALYSIS 2005 Fred Brackx
Hennie De Schepper
+ Topics in complex analysis and operator theory: Third Winter School in Complex Analysis and Operator Theory, February 2-5, 2010, Universidad Politécnica de Valencia, Valencia, Spain 2012 Oscar Blasco de la Cruz
José Antonio Bonet Solves
José Manuel Calabuig Rodríguez
David Jornet Casanova
+ The Hermitian Clifford Analysis Toolbox 2008 Fred Brackx
Hennie De Schepper
Frank Sommen
+ Chapter 11: Non-Hermitian perturbation of Hermitian matrices with physical applications 2013
+ The Dirac operator 1998 Giampiero Esposito
+ Eigenvalue problems in the framework of Clifford analysis 2001 Wolfgang Sprößig
+ 4. Hermitian Eigenvalue Problems 2000 Ming Gu
Axel Ruhe
Richard B. Lehoucq
D. C. Sorensen
Robert M. Freund
Gérard L. G. Sleijpen
Henk van der Vorst
Zheng‐Jian Bai
Ran Li
+ f(k)(σ; τi) in the hermitian case 1985 Harold Widom
+ Eigenvalues of the Dirac operator in the continuous spectrum 1994 А. Б. Хасанов
+ Transmission eigenvalues and a problem of Hans Lewy 2000 David Colton
Lassi Païvärinta
+ PDF Chat Dirac operators on the half-line: stability of spectrum and non-relativistic limit 2025 David Kramár
David Krejčiřı́k
+ Spectral Properties of the Dirac Operator on the Real Line 2021 А. Г. Баскаков
Ilya Krishtal
Н. Б. Ускова
+ PDF Chat Spectral Curves, Variational Problems and the Hermitian Matrix Model with External Source 2021 Andrei Martı́nez-Finkelshtein
Guilherme L. F. Silva