An Upper Bound on the Least Inert Prime in a Real Quadratic Field

Type: Article

Publication Date: 2000-04-01

Citations: 10

DOI: https://doi.org/10.4153/cjm-2000-017-5

Abstract

Abstract It is shown by a combination of analytic and computational techniques that for any positive fundamental discriminant D > 3705, there is always at least one prime p < √ D /2 such that the Kronecker symbol ( D/p ) = −1.

Locations

  • Canadian Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The least inert prime in a real quadratic field 2012 Enrique Treviño
+ PDF Chat Classification and Enumeration of Real Quadratic Fields Having Exactly One Non-Inert Prime Less Than a Minkowski Bound 1993 R. A. Mollin
Hywel C Williams
+ Notes on the Principal Primes of Real Quadratic Number Fields 2012 Jeong-Ho Park
+ PDF Chat None 1999 Ken Ono
+ Prime discriminants in real quadratic fields of narrow class number one 1979 Judith S. Sunley
+ PDF Chat None 2001 Dongho Byeon
+ NOTES ON QUADRATIC INTEGERS AND REAL QUADRATIC NUMBER FIELDS 2016 Jeong-Ho Park
+ A polynomial with a root mod $p$ for every $p$ has a real root 2022 Rodrigo Angelo
Max Wenqiang Xu
+ Notes on the Quadratic Integers and Real Quadratic Number Fields 2012 Jeong-Ho Park
+ Mersenne Primes in Real Quadratic Fields 2012 Sushma Palimar
B. R. Shankar
+ An Upper Bound for Class Numbers of Real Quadratic Fields Q(■) with p≡3(mod 4) 2000 LE Mao-hua
Hongji Chen
+ PARITY BIAS IN FUNDAMENTAL UNITS OF REAL QUADRATIC FIELDS 2025 Florian Breuer
CAMERON SHAW-CARMODY
+ PDF Chat Extreme Values of Class Numbers of Real Quadratic Fields 2015 Youness Lamzouri
+ PDF Chat Proof, Disproof and Advances Concerning Certain Conjectures on Real Quadratic Fields 1995 R. A. Mollin
Hywel C Williams
+ Additive prime number theory in real quadratic fields 1940 Albert Leon Whiteman
+ Lower Bound for Ideal Class Numbers of Real Quadratic Function Fields 2000 张贤科
王鲲鹏
+ On Admissible Set of Primes in Real Quadratic Fields 2020 Srinivas Kotyada
Subramani Muthukrishnan
+ Extreme values of class numbers of real quadratic fields 2015 Youness Lamzouri
+ Extreme values of class numbers of real quadratic fields 2015 Youness Lamzouri
+ PDF Chat A NOTE ON UNITS OF REAL QUADRATIC FIELDS 2012 Dongho Byeon
Sangyoon Lee