Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Erdős Weights

Type: Article

Publication Date: 1996-08-01

Citations: 21

DOI: https://doi.org/10.4153/cjm-1996-037-1

Abstract

Abstract We investigate mean convergence of Lagrange interpolation at the zeros of orthogonal polynomials p n ( W 2 , x ) for Erdös weights W 2 = e -2 Q . The archetypal example is W k,α = exp(— Q k,α ), where α > 1, k ≥ 1, and is the k -th iterated exponential. Following is our main result: Let 1 < p < ∞, Δ ∊ ℝ, k > 0. Let L n [ f ] denote the Lagrange interpolation polynomial to ƒ at the zeros of p n ( W 2 , x ) = p n ( e -2 Q , x ). Then for to hold for every continuous function ƒ : ℝ —> ℝ satisfying it is necessary and sufficient that

Locations

  • Canadian Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Erdős Weights II 1996 Steven B. Damelin
D. S. Lubinsky
+ PDF Chat Mean Convergence of Lagrange Interpolation for Exponential weights on [-1, 1] 1998 D. S. Lubinsky
+ PDF Chat Mean and uniform convergence of Lagrange interpolation with the Erdős-type weights 2012 Hee Sun Jung
Ryozi Sakai
+ Mean convergence of Lagrange interpolation for Erdős weights 1993 D. S. Lubinsky
Thandwa Mthembu
+ The Lebesgue Function and Lebesgue Constant of Lagrange Interpolation for Erdoős Weights 1998 Steven B. Damelin
+ PDF Chat Erdös-Turán mean convergence theorem for Lagrange interpolation at Lobatto points 1986 William E. Smith
+ Some Erdös-Feldheim type theorems on mean convergence of Lagrange interpolation 1983 A. K. Varma
P. Vértesi
+ On Mean Convergence of Lagrange-Kronrod Interpolation 1994 Shikang Li
+ Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights 2004 Steven B. Damelin
H.S. Jung
+ Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights 2004 Steven B. Damelin
+ Some Erdös-type Convergence Processes in Weighted Interpolation 2002 L. Szili
P. Vértesi
+ Necessary and Sufficient Conditions for Mean Convergence of Lagrange Interpolation for Freud Weights 1995 D. S. Lubinsky
D.M. Matjila
+ PDF Chat On the Lebesgue function of weighted Lagrange interpolation. II 1998 P. Vértesi
+ Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights 2001 Steven B. Damelin
H.S. Jung
K.H. Kwon
+ Christoffel functions and mean convergence for Lagrange interpolation for exponential weights 2007 Yi Ge Pan
+ Mean convergence of orthogonal series for Erdos weight 1999 K.H. Kwon
+ On mean convergence of extended Lagrange interpolation 1992 Walter Gautschi
+ Mean convergence of interpolation polynomials for exponential weights = 지수적 가중함수에 대한 보간 다항식의 평균 수렴 2001 Hee-Sun Jung
정희선
+ Notes on a classic theorem of Erdős and Grünwald 2011 J. Szabados
+ Convergence of Lagrange Interpolation for Freud Weights in Weighted L p (ℝ), 0 <P ≤ 1 1994 D.M. Matjila