On generalized Li criterion for a certain class of $L-$functions

Type: Preprint

Publication Date: 2014-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1410.4384

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On Asymptotic Behavior of Generalized Li Coefficients 2018 Anne-Maria Ernvall-Hytönen
Almasa Odžak
Medina Sušić
+ PDF Chat On the asymptotic criterion for the zero-free regions of certain $L$-functions 2016 Almasa Odžak
+ PDF Chat On the $\tau $-Li coefficients for automorphic $L$-functions 2017 Kamel Mazhouda
+ Reformulation of the Li criterion for the Selberg class 2014 Kamel Mazhouda
+ Reformulation of the Li criterion for the Selberg class 2014 Kamel Mazhouda
+ The Li–Sekatskii coefficients for the Selberg class 2022 Kamel Mazhouda
Bouchaı̈b Sodaı̈gui
+ On τ-Li Coefficients for Rankin–Selberg L-Functions 2015 Alina Bucur
Anne-Maria Ernvall-Hytönen
Almasa Odžak
Edva Roditty-Gershon
Lejla Smajlović
+ Variations of Li's criterion for an extension of the Selberg class 2012 Andrew D. Droll
+ Li Coefficients for Automorphic L-Functions 2004 Jeffrey C. Lagarias
+ First applications of generalized Li's criterion to study the Riemann zeta-function zeroes location 2014 S. K. Sekatskiǐ
+ First applications of generalized Li's criterion to study the Riemann zeta-function zeroes location 2014 S. K. Sekatskiǐ
+ L-Functions 1989 Toshitsune Miyake
+ PDF Chat On a Li-type criterion for zero-free regions of certain Dirichlet series with real coefficients 2016 Alina Bucur
Anne-Maria Ernvall-Hytönen
Almasa Odžak
Lejla Smajlović
+ On relations equivalent to the generalized Riemann hypothesis for the Selberg class 2015 Kamel Mazhouda
Lejla Smajlović
+ On relations equivalent to the generalized Riemann hypothesis for the Selberg class 2015 Kamel Mazhouda
Lejla Smajlović
+ PDF Chat On relations equivalent to the generalized Riemann hypothesis for the Selberg class 2017 Kamel Mazhouda
Lejla Smajlović
+ Topics in L -function 2016 Pei-Chu Hu
Ai-di Wu
+ General $\Omega $-theorems for coefficients of $L$-functions 2015 Jerzy Kaczorowski
Alberto Perelli
+ On Li’s coefficients for the Rankin–Selberg L-functions 2009 Almasa Odžak
Lejla Smajlović
+ Zeros near $s=1$ and the constant term of $L'/L$ for $L$-functions in the Selberg class 2020 Christian Táfula

Works That Cite This (0)

Action Title Year Authors