Chameleon dark energy and atom interferometry

Type: Article

Publication Date: 2016-08-25

Citations: 98

DOI: https://doi.org/10.1103/physrevd.94.044051

Abstract

Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). In this paper, we introduce a new technique for calculating the chameleonic force, using a numerical relaxation scheme on a uniform grid. This technique is more general than previous work, which assumed spherical symmetry to reduce the PDE to a 1-dimensional ordinary differential equation (ODE). We examine the effects of approximations made in previous efforts on this subject, and calculate the chameleonic force in a set-up that closely mimics the recent experiment of Hamilton et al. Specifically, we simulate the vacuum chamber as a cylinder with dimensions matching those of the experiment, taking into account the backreaction of the source mass, its offset from the center, and the effects of the chamber walls. Remarkably, the acceleration on a test atomic particle is found to differ by only 20% from the approximate analytical treatment. These results allow us to place rigorous constraints on the parameter space of chameleon field theories, although ultimately the constraint we find is the same as the one we reported in Hamilton et al. because we had slightly underestimated the size of the vacuum chamber. This new computational technique will continue to be useful as experiments become even more precise, and will also be a valuable tool in optimizing future searches for chameleon fields and related theories.

Locations

  • Physical review. D/Physical review. D. - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Probing dark energy with atom interferometry 2015 Clare Burrage
Edmund J. Copeland
E. A. Hinds
+ PDF Chat Atom-interferometry constraints on dark energy 2015 Paul Hamilton
Martin Jaffe
Philipp Haslinger
Q. Simmons
Holger MĂŒller
Justin Khoury
+ PDF Chat Using atom interferometry to detect dark energy 2015 Clare Burrage
Edmund J. Copeland
+ Numerical forecasts for lab experiments constraining modified gravity: the chameleon model 2015 Sandrine Schlögel
SĂ©bastien Clesse
AndrĂ© FĂŒzfa
+ Numerical forecasts for lab experiments constraining modified gravity: the chameleon model 2015 Sandrine Schlögel
SĂ©bastien Clesse
AndrĂ© FĂŒzfa
+ PDF Chat Experiment to Detect Dark Energy Forces Using Atom Interferometry 2019 Dylan O. Sabulsky
Indranil Dutta
E. A. Hinds
Benjamin Elder
Clare Burrage
Edmund J. Copeland
+ PDF Chat Constraining symmetron dark energy using atom interferometry 2020 Sheng‐wey Chiow
Nan Yu
+ PDF Chat Numerical Methods for Scalar Field Dark Energy in Table-top Experiments and Lunar Laser Ranging 2024 Hauke Fischer
René I. P. Sedmik
+ Numerical methods for scalar field dark energy in tabletop experiments and Lunar Laser Ranging 2024 Hauke Fischer
René I. P. Sedmik
+ PDF Chat Catastrophic Consequences of Kicking the Chameleon 2013 Adrienne L. Erickcek
Neil Barnaby
Clare Burrage
Zhiqi Huang
+ Searching for Chameleon Dark Energy with Mechanical Systems 2022 J. Betz
J. Manley
E. M. Wright
D. Grin
S. Singh
+ PDF Chat Searching for Chameleon Dark Energy with Mechanical Systems 2022 J. Betz
Jack Manley
E. M. Wright
Daniel Grin
Swati Singh
+ PDF Chat Searching for Chameleon Dark Energy with Mechanical Systems 2022 J. Betz
Jack Manley
E. M. Wright
Daniel Grin
Sukhdeep Singh
+ PDF Chat Numerical forecasts for lab experiments constraining modified gravity: The chameleon model 2017 Sandrine Schlögel
SĂ©bastien Clesse
AndrĂ© FĂŒzfa
+ Constraining the chameleon-photon coupling with atomic spectroscopy 2023 Benjamin D. Elder
Jeremy Sakstein
+ PDF Chat Designing dark energy afterglow experiments 2012 Amol Upadhye
Jason H. Steffen
A. Chou
+ PDF Chat Frequency shifts induced by light scalar fields 2024 Christian KĂ€ding
+ PDF Chat Searching for chameleon dark energy with mechanical systems 2023 Swati Singh
+ PDF Chat Chameleons in the early Universe: Kicks, rebounds, and particle production 2014 Adrienne L. Erickcek
Neil Barnaby
Clare Burrage
Zhiqi Huang
+ Testing Chameleons Using Neutron Interferometry 2013 Robert Poltis

Works That Cite This (70)

Action Title Year Authors
+ PDF Chat Controlling the multiport nature of Bragg diffraction in atom interferometry 2016 Richard H. Parker
C. X. Yu
Brian Estey
Weicheng Zhong
Eric Huang
Holger MĂŒller
+ PDF Chat Classical symmetron force in Casimir experiments 2020 Benjamin Elder
Valeri Vardanyan
Y. Akrami
Philippe Brax
Anne-Christine Davis
R. S. Decca
+ PDF Chat Testing Screened Modified Gravity 2021 Philippe Brax
Santiago Casas
Harry Desmond
Benjamin Elder
+ PDF Chat Casimir tests of scalar-tensor theories 2023 Philippe Brax
Anne-Christine Davis
Benjamin Elder
+ PDF Chat Exact solution for chameleon field, self-coupled through the Ratra-Peebles potential with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math>and confined between two parallel plates 2016 A. N. Ivanov
G. Cronenberg
Roman Höllwieser
Tobias Jenke
Mario Pitschmann
M. Wellenzohn
H. Abele
+ PDF Chat Black hole accretion discs and screened scalar hair 2016 Anne-Christine Davis
Ruth Gregory
Rahul Jha
+ PDF Chat Constraining symmetron fields with atom interferometry 2016 Clare Burrage
Andrew Kuribayashi-Coleman
James A. Stevenson
Ben Thrussell
+ PDF Chat What laboratory experiments can teach us about cosmology: A chameleon example 2019 Clare Burrage
+ PDF Chat Cold atoms in space: community workshop summary and proposed road-map 2022 IvĂĄn Alonso
C. Alpigiani
Brett Altschul
H. M. AraĂșjo
G. Arduini
J. Arlt
Leonardo Badurina
Antun BalaĆŸ
Satvika Bandarupally
B. C. Barish
+ PDF Chat Atom interferometry using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>σ</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mo>−</mml:mo><mml:msup><mml:mi>σ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:math> Raman transitions between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>F</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo></mml:mrow><mml:msub><mml:mi>m</mml:mi><mml:mi>F</mml:mi></mml:msub><mml:mrow><
 2022 Jeanne Bernard
Yannick Bidel
Malo Cadoret
Clément Salducci
Nassim Zahzam
Sylvain Schwartz
Alexis Bonnin
CĂ©dric Blanchard
Alexandre Bresson