Remarks on Equations of the Form <i>p</i><sup>2</sup>=A<i>q</i><sup>2</sup> + 1, and on the common Method of resolving them in whole Numbers

Type: Book-Chapter

Publication Date: 2009-07-20

Citations: 0

DOI: https://doi.org/10.1017/cbo9780511693519.093

Locations

  • Cambridge University Press eBooks - View

Similar Works

Action Title Year Authors
+ On the Equation (<i>x</i><sup> <i>m</i> </sup> – 1)/(<i>x</i> – 1) = <i>y</i><sup> <i>q</i> </sup> with <i>x</i> Power 1997 Noriko Hirata-Kohno
T. N. Shorey
+ Sur la manière de résoudre l'équation <i>t</i><sup>2</sup>−<i>pu</i><sup>2</sup> = 1 au moyen des fonctions circulaires 2012 Peter Gustav Lejeune Dirichlet
+ Sur l'équation <i>x</i><sup>3</sup> + <i>y</i><sup>3</sup> = <i>z</i><sup>3</sup> + <i>u</i><sup>3</sup> 2009 Charles Hermite
+ The equation <i>c</i><sub>1</sub><i>x</i><sup>k</sup><sub>1</sub> + … + <i>c</i><sub>s</sub><i>x</i><sup>k</sup><sub>s</sub> = 0 2005 T. D. Browning
+ A Note on the Equation <i>n</i><sup>2</sup>+<i>n</i>+1=<i>p<sup>r</sup></i> 1964 James Perkins Burling
V. H. Keiser
+ 80.34 On solutions of <i>m</i><sup>2</sup> + <i>n</i><sup>2</sup> = 1 + <i>l</i><sup>2</sup> 1996 Christopher Bradley
+ ON THE GENERAL DETERMINATION OF THE INTEGRATING FACTORS OF THE EQUATION <i>Mdx</i> + <i>Ndy</i> = 0 2014 George Boole
+ PDF Chat Correction to: On the Diophantine Equation <i>n</i>(<i>n</i> + <i>d</i>) · · · (<i>n</i> + (<i>k</i> – 1)<i>d</i>) = <i>by<sup>l</sup></i> 2005 Kálmán Győry
Lajos Hajdu
N. Saradha
+ 2015. A note on the diophantine equation <i>z</i><sup>2</sup> = <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> 1948 R. S. F. Goonewardena
+ PDF Chat XLVII. <i>On the equation in numbers</i> A<i>x</i> <sup>3</sup> +B<i>y</i> <sup>3</sup>+C<i>z</i> <sup>3</sup>=D<i>xyz, and its associate system of equations</i> 1847 J.J. Sylvester
+ 11. The quadratic equation: <i>ax</i><sup>2</sup> + <i>bx</i> + <i>c</i> = 0 1958 A. G. Sillitto
+ Important Formulae and Equations 2018 Ajit Kumar
+ On the equation <i>x</i><sup>17</sup> - 1 = 0 2009 Arthur Cayley
+ 1. The quadratic equation <i>x</i><sup>2</sup> – <i>px</i> + <i>q</i> = 0 1958 J. W. Hesselgreaves
+ PDF Chat THE EQUATIONS 3<i>x</i><sup>2</sup>−2 = <i>y</i><sup>2</sup> AND 8<i>x</i><sup>2</sup>−7 = <i>z</i><sup>2</sup> 1969 A. Baker
H. Davenport
+ 83.27 Integer solutions of <i>a</i><sup>-2</sup> + <i>b</i><sup>-2</sup> = <i>d</i><sup>-2</sup> 1999 Roger Voles
+ 1517. <i>Triangle formulae</i> 1941 Raymond Smart
+ PDF Chat 853. Note on a formula for Δ<sup> <i>n</i> </sup>0<sup> <i>i</i> </sup>/<i>n</i><sup> <i>i</i> </sup> when n, i are very large numbers 2009 Arthur Cayley
+ PDF Chat <i>S</i>-unit equations and their applications 1988 Jan‐Hendrik Evertse
Kálmán Győry
C. L. Stewart
R. Tijdeman
+ The approximate functional equations for ζ<i> <sup>k</sup> </i>(<i>s</i>) 2012 Aleksandar Ivić

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors