Type: Article
Publication Date: 2016-06-01
Citations: 443
DOI: https://doi.org/10.1109/cvpr.2016.245
We present recursive recurrent neural networks with attention modeling (R2AM) for lexicon-free optical character recognition in natural scene images. The primary advantages of the proposed method are: (1) use of recursive convolutional neural networks (CNNs), which allow for parametrically efficient and effective image feature extraction, (2) an implicitly learned character-level language model, embodied in a recurrent neural network which avoids the need to use N-grams, and (3) the use of a soft-attention mechanism, allowing the model to selectively exploit image features in a coordinated way, and allowing for end-to-end training within a standard backpropagation framework. We validate our method with state-of-the-art performance on challenging benchmark datasets: Street View Text, IIIT5k, ICDAR and Synth90k.