On the Dimension of the Locus of Determinantal Hypersurfaces

Type: Article

Publication Date: 2016-10-17

Citations: 5

DOI: https://doi.org/10.4153/cmb-2016-070-8

Abstract

The characteristic polynomial of an $r$-tuple $(A_1,..., A_r)$ of $n \times n$ matrices is the determinant $\det(x_0 I + x_1 A_1 + ... + x_r A_r)$. We show that if $r$ is at least 3 and $A = (A_1,..., A_r)$ is an $r$-tuple of matrices in general position, then up to conjugacy there are only finitely many $r$-tuples of matrices with the same characteristic polynomial as $A$. Equivalently, the locus of determinantal hypersurfaces of degree $n$ in $P^r$ is irreducible of dimension $(r-1)n^2 + 1$.

Locations

  • Canadian Mathematical Bulletin - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Determinantal hypersurface from a geometric perspective 2013 Jing-Jing Huang
+ On the number of symmetric presentations of a determinantal hypersurface 2020 Matthew Brassil
Zinovy Reichstein
+ PDF Chat A note on free determinantal hypersurface arrangements in P¹⁴C 2023 Marek Janasz
Paulina Wiśniewska
+ On the number of symmetric presentations of a determinantal hypersurface. 2020 Matthew Brassil
Zinovy Reichstein
+ PDF Chat A Lower Bound for the Determinantal Complexity of a Hypersurface 2015 Jarod Alper
Tristram Bogart
Mauricio Velasco
+ PDF Chat On rank 3 quadratic equations of Veronese varieties 2024 Euisung Park
Shin Zhu Sim
+ PDF Chat Determinantal hypersurfaces. 2000 Arnaud Beauville
+ PDF Chat On the codimension of permanental varieties 2024 Ada Boralevi
Enrico Maria Carlini
Mateusz Michałek
Emanuele Ventura
+ A lower bound for the determinantal complexity of a hypersurface 2015 Jarod Alper
Tristram Bogart
Mauricio Velasco
+ A lower bound for the determinantal complexity of a hypersurface 2015 Jarod Alper
Tristram Bogart
Mauricio Velasco
+ PDF Chat On the number of symmetric presentations of a determinantal hypersurface 2021 Matthew Brassil
Zinovy Reichstein
+ PDF Chat On the freeness of certain determinantal hypersurface arrangements in $\mathbb{P}^{14}$ 2022 Paulina Wiśniewska
Marek Janasz
+ Jet schemes of determinantal varieties 2006 Cornelia Yuen
+ On the determinantal representations of singular hypersurfaces in P^n 2009 Dmitry Kerner
Victor Vinnikov
+ A note on free determinantal hypersurface arrangements in $\mathbb{P}^{14}_{\mathbb{C}}$ 2022 Marek Janasz
Paulina Wiśniewska
+ Determinantal representations of singular hypersurfaces in P^n 2009 Dmitry Kerner
Victor Vinnikov
+ Determinantal representations of singular hypersurfaces in P^n 2009 Dmitry Kerner
Victor Vinnikov
+ How to calculate the proportion of everywhere locally soluble diagonal hypersurfaces 2020 Yoshinori Kanamura
Yoshinosuke Hirakawa
+ The Noether-Lefschetz locus of surfaces in $\mathbb{P}^3$ formed by determinantal surfaces 2023 Manuel Leal
César Lozano Huerta
Montserrat Vite
+ Degeneration of Fermat hypersurfaces in positive characteristic 2016 Thanh Hoai Hoang