Elasticity of randomly diluted honeycomb and diamond lattices with bending forces

Type: Article

Publication Date: 2016-03-29

Citations: 5

DOI: https://doi.org/10.1088/0953-8984/28/16/165402

Abstract

We use numerical simulations and an effective-medium theory to study the rigidity percolation transition of the honeycomb and diamond lattices when weak bond-bending forces are included.We use a rotationally invariant bond-bending potential, which, in contrast to the Keating potential, does not involve any stretching.As a result, the bulk modulus does not depend on the bending stiffness κ.We obtain scaling functions for the behavior of some elastic moduli in the limits of small ∆P = 1 -P, and small δP = P -Pc, where P is an occupation probability of each bond, and Pc is the critical probability at which rigidity percolation occurs.We find good quantitative agreement between effective-medium theory and simulations for both lattices for P close to one.

Locations

  • Journal of Physics Condensed Matter - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Effective-medium theory of a filamentous triangular lattice 2013 Xiaoming Mao
Olaf Stenull
T. C. Lubensky
+ PDF Chat Nonlinear effective-medium theory of disordered spring networks 2012 Michael Sheinman
Chase P. Broedersz
F. C. MacKintosh
+ Effective medium theory of random regular networks 2021 Ojan Khatib Damavandi
M. Lisa Manning
J. M. Schwarz
+ PDF Chat Elasticity of a filamentous kagome lattice 2013 Xiaoming Mao
Olaf Stenull
T. C. Lubensky
+ PDF Chat Effective medium theory of random regular networks 2022 Ojan Khatib Damavandi
M. Lisa Manning
J. M. Schwarz
+ PDF Chat Elasticity of Stiff Polymer Networks 2003 Jan Wilhelm
Erwin Frey
+ Odd moduli of disordered odd elastic lattices 2022 Zhitao Chen
+ PDF Chat Rigidity percolation by next-nearest-neighbor bonds on generic and regular isostatic lattices 2015 Leyou Zhang
D. Zeb Rocklin
Bryan Gin–ge Chen
Xiaoming Mao
+ PDF Chat Mechanics of anisotropic spring networks 2014 T. Zhang
J. M. Schwarz
Moumita Das
+ PDF Chat Athermal Fracture of Elastic Networks: How Rigidity Challenges the Unavoidable Size-Induced Brittleness 2020 Simone Dussi
Justin Tauber
Jasper van der Gucht
+ PDF Chat Density scaling in the mechanics of a disordered mechanical meta-material 2019 Daniel Rayneau-Kirkhope
Silvia Bonfanti
Stefano Zapperi
+ PDF Chat Redundancy and Cooperativity in the Mechanics of Compositely Crosslinked Filamentous Networks 2012 Moumita Das
David Quint
J. M. Schwarz
+ Nonaffine rubber elasticity for stiff polymer networks 2007 Claus Heussinger
Bruce F. Schaefer
Erwin Frey
+ PDF Chat Multifunctional twisted kagome lattices: Tuning by pruning mechanical metamaterials 2020 Danilo B. Liarte
Olaf Stenull
T. C. Lubensky
+ PDF Chat Series approach to the randomly diluted elastic network 1992 Jian Wang
A. B. Harris
Joan Adler
+ PDF Chat Topological Elasticity of Flexible Structures 2020 Adrien Saremi
D. Zeb Rocklin
+ PDF Chat Nonaffine rubber elasticity for stiff polymer networks 2007 Claus Heussinger
Boris Schaefer
Erwin Frey
+ PDF Chat First-order rigidity transition and multiple stability regimes for random networks with internal stresses 2004 David Head
+ Mechanics of elastic networks 2014 Andrew N. Norris
+ Rigidity and auxeticity transitions in networks with strong bond-bending interactions 2019 Robbie Rens
Edan Lerner