From an Initial Data to a Global Solution of the Non-linear Schrödinger Equation: A Building Process

Type: Article

Publication Date: 2015-07-22

Citations: 3

DOI: https://doi.org/10.1093/imrn/rnv199

Abstract

The purpose of this work is to construct a continuous map from the homogeneous Besov space |$\dot B^0_{2,4}({\mathbb {R}}^2)$| in the set |$\mathcal {G}$| of initial data in |$\dot B^0_{2,4}({\mathbb R}^2)$| which gives birth to global solution of the mass critical non-linear Schrödinger equation in the space |$L^4({\mathbb R}^{1+2})$|⁠. We use the fact that solutions of scale which are different enough almost do not interact; the main point is that we determine a condition about the size of the scale which depends continuously on the data.

Locations

  • International Mathematics Research Notices - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Schrödinger maps 2014 Herbert Koch
Daniel Tataru
Monica Vişan
+ Global well-posedness for the Schrödinger map problem with small Besov norm 2017 Benjamin Dodson
+ PDF Chat On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2022 Vanessa Barros
Simão Correia
Filipe Oliveira
+ Global results for Schrödinger Maps in dimensions $n \geq 3$ 2006 Ioan Bejenaru
+ Small data blow-up of L^{2}-solution for the nonlinear Schrödinger equation without gauge invariance 2011 Masahiro Ikeda
Yuta Wakasugi
+ Global existence and uniqueness of Schrödinger maps in dimensions $d\geq 4$ 2006 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig
+ On the nonlinear Schrödinger equation in spaces of infinite mass and low regularity 2020 Vanessa Andrade de Barros
Simão Correia
Filipe Oliveira
+ Non-uniform dependence on initial data for the Camassa-Holm equation in the critical Besov space 2020 Jinlu Li
Xing Wu
Yanghai Yu
Weipeng Zhu
+ PDF Chat Nonlocal Schrödinger equations in metric measure spaces 2015 Marcelo Actis
Hugo Aimar
Bruno Bongioanni
Ivana Gómez
+ The initial value problem for nonlinear Schrödinger equations 2006 Luis Vega
+ The initial value problem for nonlinear Schrödinger equations 2007 Luis Vega
+ PDF Chat Small data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance 2013 Masahiro Ikeda
Yuta Wakasugi
+ On dyadic nonlocal Schrödinger equations with Besov initial data 2013 Hugo Aimar
Bruno Bongioanni
Ivana Gómez
+ Global well-posedness and scattering for Derivative Schrödinger equation 2009 Baoxiang Wang
Yuzhao Wang
+ Global Schrödinger maps 2008 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig
Daniel Tataru
+ PDF Chat Global Schrödinger maps in dimensions d>=2: Small data in the critical Sobolev spaces 2011 Ioan Bejenaru
Alexandru D. Ionescu
Carlos E. Kenig
Daniel Tataru
+ The dependences on initial data for the b-family equation in critical Besov space 2014 Hao Tang
Shijie Shi
Zhengrong Liu
+ Équation de Schrödinger non-linéaire dans un domaine à bord 2006 Ramona Anton
+ Non-uniform dependence for higher dimensional Camassa-Holm equations in Besov spaces 2020 Jinlu Li
Wei Deng
Min Li
+ Global well-posedness and scattering for the defocusing $\dot{H}^{\frac{1}{2}}$-critical nonlinear Schrödinger equation in $\mathbb{R}^2$ 2018 Xueying Yu