Computing integral points on Xns+(p)

Type: Article

Publication Date: 2021-05-20

Citations: 3

DOI: https://doi.org/10.2140/ant.2021.15.569

Abstract

We develop a general method for computing integral points on modular curves, based on Baker's inequality.As an illustration, we show that for 11 ≤ p < 101, the only integral points on the curve X + ns (p) are the CM points.

Locations

  • Algebra & Number Theory - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Bounding $j$-invariant of integral points on $X_{\ns}^{+}(p)$ 2012 Aurélien Bajolet
Min Sha
+ Bounding $j$-invariant of integral points on $X_{\ns}^{+}(p)$ 2012 Aurélien Bajolet
Min Sha
+ Integral points of a modular curve of level 11 2011 René Schoof
Nikos Tzanakis
+ PDF Chat Integral points of a modular curve of level 11 2011 René Schoof
Nikos Tzanakis
+ Integral points of a modular curve of level 11 2011 René Schoof
Nikos Tzanakis
+ Rational points on the modular curve Xsplit(N) 1981 文之 百瀬
+ PDF Chat Bounding the $j$-invariant of integral points on $X_{\mathrm {ns}}^{+}(p)$ 2014 Aurélien Bajolet
Min Sha
+ Computing points on bielliptic modular curves over fixed quadratic fields 2023 Philippe Michaud‐Jacobs
+ Modular Curves with many Points over Finite Fields 2016 Valerio Dose
Guido Lido
Pietro Mercuri
Claudio Stirpe
+ Integral points on the modular curves $X_0(p)$ 2019 Yulin Cai
+ PDF Chat COMPUTING POINTS ON BIELLIPTIC MODULAR CURVES OVER FIXED QUADRATIC FIELDS 2023 Philippe Michaud‐Jacobs
+ Properties of cuspidal divisor class numbers of non-split Cartan modular curves 2016 Pierfrancesco Carlucci
+ Properties of cuspidal divisor class numbers of non-split Cartan modular curves 2016 Pierfrancesco Carlucci
+ Rational points on the modular curve Xsplit(N) = モジュラー曲線Xsplit(N)の有理点達について 1981 文之 百瀬
+ On Higher Order Weierstrass Points on $X_0(N)$ 2022 Goran Muić
Damir Mikoč
+ Serre's uniformity problem in the split Cartan case 2008 Yuri Bilu
Pierre Parent
+ Modular curves with many points over finite fields 2023 Valerio Dose
Guido Lido
Pietro Mercuri
Claudio Stirpe
+ Action of Modular Correspondences around CM Points 2002 Jean-Marc Couveignes
Thiérry Hénocq
+ PDF Chat Integral points on elliptic curves $y^{2}=x(x-2^{m}) (x+p)$ 2019 Tomasz Jędrzejak
Małgorzata Wieczorek
+ Dividing rational points on abelian varieties of CM-type 1976 Kenneth A. Ribet