Type: Article
Publication Date: 2003-01-01
Citations: 19
DOI: https://doi.org/10.57262/die/1356060512
We are concerned with the problem of determining the sharp regularity of the coefficients with respect to the time variable $t$ in order to have a well posed Cauchy problem in $H^\infty$ or in Gevrey classes for a $p$-evolution operator of Schrödinger type. We use and mix two different scales of regularity of global and local type: the modulus of Hölder continuity and/or the behavior with respect to $|t-t_0|^{-q},\ q\geq 1,$ of the first derivative as $t$ tends to a point $t_0$. Both are ways to weaken the Lipschitz regularity. We give also counterexamples to show that the conditions we find are sharp.