Initial value problem for second order scalar fluctuations in the Einstein static universe

Type: Article

Publication Date: 2005-02-10

Citations: 16

DOI: https://doi.org/10.1103/physrevd.71.044011

Abstract

We consider fluctuations in a perfect irrotational fluid coupled to gravity in an Einstein static universe background. We show that the homogeneous linear perturbations of the scalar and metric fluctuations in the Einstein static universe must be present if the second order constraint equations are to be integrable. I.e., the ``linearization stability'' constraint forces the presence of these homogeneous modes. Since these linear homogeneous scalar modes are well known to be exponentially unstable, the tactic of neglecting these modes to create a long-lived, almost Einstein universe does not work, even if all higher order $(\mathrm{L}>1)$ modes are dynamically stable.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A note on second-order perturbations of non-canonical scalar fields 2010 Corrado Appignani
Roberto Casadio
S. Shankaranarayanan
+ Instability of gravitational and electromagnetic perturbations of extremal Reissner-Nordström spacetime 2022 Marios Antonios Apetroaie
+ PDF Chat Linear Perturbations for the Vacuum Axisymmetric Einstein Equations 2011 Sergio Dain
MartĂ­n Reiris
+ PDF Chat Linearization stability of the Einstein equations 1973 Arthur E. Fischer
Jerrold E. Marsden
+ PDF Chat Inhomogeneous perturbations and stability analysis of the Einstein static universe in $f(R,T)$ gravity 2019 M. Sharif
Arfa Waseem
+ PDF Chat The general solution at large scale for second order perturbations in a scalar field dominated universe 2019 Claes Uggla
J. Wainwright
+ PDF Chat THE BLACK HOLE STABILITY PROBLEM FOR LINEAR SCALAR PERTURBATIONS 2012 Mihalis Dafermos
Igor Rodnianski
+ PDF Chat On the stability of the Einstein static universe 2003 John D. Barrow
George Ellis
Roy Maartens
Christos G. Tsagas
+ Second-order perturbations of the Friedmann world model 2004 Hyerim Noh
Jai-chan Hwang
+ Cosmological stability in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>Ď•</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="script">G</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> gravity 2023 Shinji Tsujikawa
+ Ambiguities in second-order cosmological perturbations for non-canonical scalar fields 2010 Corrado Appignani
Roberto Casadio
S. Shankaranarayanan
+ PDF Chat Existence of Einstein static universes and their stability in fourth-order theories of gravity 2008 Rituparno Goswami
Naureen Goheer
Peter K. S. Dunsby
+ PDF Chat Covariant and gauge-invariant linear scalar perturbations in multiple scalar field cosmologies 2014 Artur Alho
Filipe C. Mena
+ Future global non-linear stability of surface symmetric solutions of the Einstein-Vlasov system with a cosmological constant 2014 Ernesto Nungesser
+ Future global non-linear stability of surface symmetric solutions of the Einstein-Vlasov system with a cosmological constant 2014 Ernesto Nungesser
+ PDF Chat Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background 2014 Hyerim Noh
+ Second order cosmological perturbations: a minimal approach 2012 Claes Uggla
J. Wainwright
+ Second order perturbations 1999 Denis Serre
+ Cosmological Perturbation Theory 2013 Patrick Peter
+ PDF Chat Cosmological Perturbation Theory 2018 Patrick Peter