Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
A Convolutional Attention Network for Extreme Summarization of Source Code
Miltiadis Allamanis
,
Hao Peng
,
Charles Sutton
Type:
Preprint
Publication Date:
2016-02-09
Citations:
92
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
A Convolutional Attention Network for Extreme Summarization of Source Code
2016
Miltiadis Allamanis
Hao Peng
Charles Sutton
+
A Convolutional Neural Network for Language-Agnostic Source Code Summarization
2019
Jessica Moore
Ben Gelman
David Slater
+
A Convolutional Neural Network for Language-Agnostic Source Code Summarization
2019
Jessica Moore
Ben Gelman
David Slater
+
A Convolutional Neural Network for Language-Agnostic Source Code Summarization
2019
Jessica Moore
Ben Gelman
David Slater
+
A Transformer-based Approach for Source Code Summarization
2020
Wasi Uddin Ahmad
Saikat Chakraborty
Baishakhi Ray
Kai-Wei Chang
+
A Transformer-based Approach for Source Code Summarization
2020
Wasi Uddin Ahmad
Saikat Chakraborty
Baishakhi Ray
Kai-Wei Chang
+
PDF
Chat
EyeTrans: Merging Human and Machine Attention for Neural Code Summarization
2024
Yifan Zhang
Jiliang Li
Zachary Karas
Aakash Bansal
Toby Jia-Jun Li
Collin McMillan
Kevin Leach
Yu Huang
+
PDF
Chat
On the evaluation of neural code summarization
2022
Ensheng Shi
Yanlin Wang
Lun Du
Junjie Chen
Shi Han
Hongyu Zhang
Dongmei Zhang
Hongbin Sun
+
Tram: A Token-level Retrieval-augmented Mechanism for Source Code Summarization
2023
Tong Ye
Lingfei Wu
Tengfei Ma
Xuhong Zhang
Yangkai Du
Peiyu Liu
Wenhai Wang
Shouling Ji
+
Neural Code Summarization: How Far Are We?
2021
Ensheng Shi
Yanlin Wang
Lun Du
Junjie Chen
Shi Han
Hongyu Zhang
Dongmei Zhang
Hongbin Sun
+
GypSum
2022
Y Wang
Yu Dong
Xuesong Lu
Aoying Zhou
+
DeepSumm -- Deep Code Summaries using Neural Transformer Architecture
2020
Vivek Kumar Gupta
+
A Topic Guided Pointer-Generator Model for Generating Natural Language Code Summaries
2021
Xin Wang
Xin Peng
Jun Sun
Yifan Zhao
Chi Chen
Jinkai Fan
+
PDF
Chat
Ensemble Models for Neural Source Code Summarization of Subroutines
2021
Alexander LeClair
Aakash Bansal
Collin McMillan
+
PDF
Chat
Ensemble Models for Neural Source Code Summarization of Subroutines
2021
Alexander LeClair
B Aakash
Collin McMillan
+
Assemble Foundation Models for Automatic Code Summarization
2022
Jian Gu
Pasquale Salza
Harald Gall
+
Ensemble Models for Neural Source Code Summarization of Subroutines
2021
Alexander LeClair
Aakash Bansal
Collin McMillan
+
PDF
Chat
Assemble Foundation Models for Automatic Code Summarization
2022
Jian Gu
Pasquale Salza
Harald Gall
+
Revisiting File Context for Source Code Summarization
2023
Aakash Bansal
Chia‐Yi Su
Collin McMillan
+
WheaCha: A Method for Explaining the Predictions of Code Summarization Models
2021
Yu Wang
Ke Wang
Linzhang Wang
Works That Cite This (55)
Action
Title
Year
Authors
+
PDF
Chat
A general path-based representation for predicting program properties
2018
Uri Alon
Meital Zilberstein
Omer Levy
Eran Yahav
+
PDF
Chat
IR2V <scp>EC</scp>
2020
S. VenkataKeerthy
Rohit Aggarwal
Shalini Jain
Maunendra Sankar Desarkar
Ramakrishna Upadrasta
Y. N. Srikant
+
Maybe Deep Neural Networks are the Best Choice for Modeling Source Code
2019
Rafael-Michael Karampatsis
Charles Sutton
+
Incorporating Discrete Translation Lexicons into Neural Machine Translation
2016
Philip Arthur
Graham Neubig
Satoshi Nakamura
+
PDF
Chat
Semantic Robustness of Models of Source Code
2022
Jordan Henkel
Goutham Ramakrishnan
Zi Wang
Aws Albarghouthi
Somesh Jha
Thomas Reps
+
PDF
Chat
StaQC
2018
Ziyu Yao
Daniel S. Weld
Weipeng Chen
Huan Sun
+
SmartPaste: Learning to Adapt Source Code
2017
Miltiadis Allamanis
Marc Brockschmidt
+
Pointing to Subwords for Generating Function Names in Source Code
2020
Shogo Fujita
Hidetaka Kamigaito
Hiroya Takamura
Manabu Okumura
+
PDF
Chat
NEXT: a neural network framework for next POI recommendation
2019
Zhiqian Zhang
Chenliang Li
Zhiyong Wu
Aixin Sun
Dengpan Ye
Xiangyang Luo
+
Cooperative Generator-Discriminator Networks for Abstractive Summarization with Narrative Flow
2019
Saadia Gabriel
Antoine Bosselut
Ari Holtzman
Kyle Lo
Aslı Çelikyılmaz
Yejin Choi
Works Cited by This (19)
Action
Title
Year
Authors
+
Teaching Machines to Read and Comprehend
2015
Karl Moritz Hermann
Tomáš Kočiský
Edward Grefenstette
Lasse Espeholt
Will Kay
Mustafa Suleyman
Phil Blunsom
+
Learning to Execute
2014
Wojciech Zaremba
Ilya Sutskever
+
Learning to transduce with unbounded memory
2015
Edward Grefenstette
Karl Moritz Hermann
Mustafa Suleyman
Phil Blunsom
+
PDF
Chat
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
2015
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+
PDF
Chat
Going deeper with convolutions
2015
Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
+
Modelling, Visualising and Summarising Documents with a Single Convolutional Neural Network
2014
Misha Denil
Alban Demiraj
Nal Kalchbrenner
Phil Blunsom
Nando de Freitas
+
A Convolutional Neural Network for Modelling Sentences
2014
Nal Kalchbrenner
Edward Grefenstette
Phil Blunsom
+
Learning Program Embeddings to Propagate Feedback on Student Code
2015
Chris Piech
Jonathan Huang
Andy Nguyễn
Mike Phulsuksombati
Mehran Sahami
Leonidas Guibas
+
Practical Bayesian Optimization of Machine Learning Algorithms
2012
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
+
Transition-Based Dependency Parsing with Stack Long Short-Term Memory
2015
Chris Dyer
Miguel Ballesteros
Ling Wang
Austin Matthews
Noah A. Smith