Quantitative robustness of regularity for 3D Navier–Stokes system in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:math>-spaces

Type: Article

Publication Date: 2016-03-26

Citations: 2

DOI: https://doi.org/10.1016/j.nonrwa.2016.03.001

Locations

  • Nonlinear Analysis Real World Applications - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Solutions of the 3D Navier–Stokes equations for initial data in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>: Robustness of regularity and numerical verification of regularity for bounded … 2012 Pedro Marín-Rubio
James C. Robinson
Witold Sadowski
+ Regularity criterion in terms of the oscillation of pressure for the 3D Navier–Stokes equations 2023 Dongho Chae
+ From concentration to quantitative regularity: a short survey of recent developments for the Navier-Stokes equations 2022 Tobias Barker
Christophe Prange
+ Regularity criteria in weak $L^3$ for 3D incompressible Navier-Stokes equations 2013 Tai‐Peng Tsai
Yuwen Luo
+ Regularity criteria in weak $L^3$ for 3D incompressible Navier-Stokes equations 2013 Yuwen Luo
Tai‐Peng Tsai
+ Regularity criteria for 3D Navier–Stokes equations in terms of a mid frequency part of velocity in <i>B</i>˙<sup>-1</sup> <sub>∞,∞</sub> 2021 Myong‐Hwan Ri
+ Regularity criteria for 3D Navier–Stokes equations in terms of finite frequency parts of velocity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si10.svg"><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mo>̇</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mi>∞</mml:mi><mml:mo>,</mml:mo><mml:mi>∞</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msubsup… 2019 Myong‐Hwan Ri
+ Regularity conditions for the 3D Navier-Stokes equations 2009 Jishan Fan
Hui Gao
+ PDF Chat Robustness of regularity for the 3D convective Brinkman–Forchheimer equations 2021 Karol W. Hajduk
James C. Robinson
Witold Sadowski
+ PDF Chat New $$\varepsilon $$-Regularity Criteria of Suitable Weak Solutions of the 3D Navier–Stokes Equations at One Scale 2019 Cheng He
Yanqing Wang
Daoguo Zhou
+ Global regularity of the Navier–Stokes equations on 3D periodic thin domain with large data 2020 Na Zhao
+ Local regularity criteria of the 3D Navier–Stokes and related equations 2016 Yanqing Wang
Gang Wu
+ New $\varepsilon$-regularity criteria and application to the box dimension of the singular set in the 3D Navier-Stokes equations 2017 Cheng He
Yan Qing Wang
Daoguo Zhou
+ PDF Chat The Regularity of Weak Solutions of the 3D Navier–Stokes Equations in $${B^{-1}_{\infty,\infty}}$$ 2009 Alexey Cheskidov
Roman Shvydkoy
+ Regularity criteria for the 3D Navier-Stokes and MHD equations 2015 Alexey Cheskidov
Mimi Dai
+ Topics in the regularity theory of the Navier-Stokes equations 2018 Tuan Pham
+ A study on the global regularity for a model of the 3D axisymmetric Navier–Stokes equations 2011 Lizheng Tao
Jiahong Wu
+ Robustness of Regularity for the $3$D Convective Brinkman--Forchheimer Equations 2019 Karol W. Hajduk
James C. Robinson
Witold Sadowski
+ A smallness regularity criterion for the 3D Navier-Stokes equations in the largest class 2012 Zujin Zhang
+ Global regularity of 3D rotating Navier-Stokes equations for resonant domains 2000 Anatoli Babin
Alex Mahalov
B. Nicolaenko