Enabling high confidence detections of gravitational-wave bursts

Type: Article

Publication Date: 2016-08-25

Citations: 43

DOI: https://doi.org/10.1103/physrevd.94.044050

Abstract

With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly studied when detailed models for the waveforms are available. However, one motivation for the field of gravitational wave astronomy is the potential for new discoveries. Recognizing and characterizing unanticipated signals requires data analysis techniques which do not depend on theoretical predictions for the gravitational waveform. Past searches for short-duration un-modeled gravitational wave signals have been hampered by transient noise artifacts, or "glitches," in the detectors. In some cases, even high signal-to-noise simulated astrophysical signals have proven difficult to distinguish from glitches, so that essentially any plausible signal could be detected with at most 2-3 $\sigma$ level confidence. We have put forth the BayesWave algorithm to differentiate between generic gravitational wave transients and glitches, and to provide robust waveform reconstruction and characterization of the astrophysical signals. Here we study BayesWave's capabilities for rejecting glitches while assigning high confidence to detection candidates through analytic approximations to the Bayesian evidence. Analytic results are tested with numerical experiments by adding simulated gravitational wave transient signals to LIGO data collected between 2009 and 2010 and found to be in good agreement.

Locations

  • Physical review. D/Physical review. D. - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Leveraging waveform complexity for confident detection of gravitational waves 2016 J. B. Kanner
T. B. Littenberg
N. Cornish
M. Millhouse
Enia Xhakaj
F. Salemi
M. Drago
G. Vedovato
S. Klimenko
+ Characterizing the efficacy of methods to subtract terrestrial transient noise near gravitational wave events and the effects on parameter estimation 2023 S. Ghonge
Joshua Brandt
J. M. Sullivan
M. Millhouse
Katerina Chatziioannou
J. A. Clark
T. B. Littenberg
N. Cornish
Sophie Hourihane
L. Cadonati
+ Detection, reconstruction and interpretation ofunmodelled gravitational-wave transients 2020 R. Macas
+ PDF Chat BayesWave analysis pipeline in the era of gravitational wave observations 2021 N. Cornish
T. B. Littenberg
B. BĂ©csy
Katerina Chatziioannou
J. A. Clark
S. Ghonge
M. Millhouse
+ PDF Chat Information-theoretic approach to the gravitational-wave burst detection problem 2017 Ryan S. Lynch
S. Vitale
R. C. Essick
E. Katsavounidis
Florent Robinet
+ Bayesian reconstruction of gravitational wave bursts using chirplets 2017 M. Millhouse
N. Cornish
T. B. Littenberg
+ PDF Chat Bayesian reconstruction of gravitational wave bursts using chirplets 2018 M. Millhouse
N. Cornish
T. B. Littenberg
+ PDF Chat Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline 2017 B. BĂ©csy
P. Raffai
N. Cornish
R. C. Essick
J. B. Kanner
E. Katsavounidis
T. B. Littenberg
M. Millhouse
S. Vitale
+ PDF Chat Bayesian reconstruction of gravitational-wave signals from binary black holes with nonzero eccentricities 2020 G. DĂĄlya
P. Raffai
B. BĂ©csy
+ PDF Chat Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches 2015 N. Cornish
T. B. Littenberg
+ Separating Gravitational Wave Signals from Instrument Artifacts 2010 T. B. Littenberg
N. Cornish
+ Separating Gravitational Wave Signals from Instrument Artifacts 2010 T. B. Littenberg
N. Cornish
+ The BayesWave Algorithm for Detecting and Characterizing Gravitational Wave Burst Signals 2011 N. Cornish
P. T. Baker
T. B. Littenberg
+ PDF Chat Navigating Unknowns: Deep Learning Robustness for Gravitational Wave Signal Reconstruction 2024 C. Chatterjee
K. Jani
+ PDF Chat Separating gravitational wave signals from instrument artifacts 2010 T. B. Littenberg
N. Cornish
+ Localization of generic gravitational-wave transients with the early advanced LIGO and Virgo detectors 2014 R. C. Essick
S. Vitale
E. Katsavounidis
G. Vedovato
S. Klimenko
+ PDF Chat Gravitational wave astronomy: needle in a haystack 2013 N. Cornish
+ PDF Chat LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS 2015 R. C. Essick
S. Vitale
E. Katsavounidis
G. Vedovato
S. Klimenko
+ BayesWave: a novel method for detecting un-modeled gravitational wave bursts 2013 P. T. Baker
N. Cornish
T. B. Littenberg
+ PDF Chat Parameter estimation with gravitational waves 2022 N. Christensen
Renate Meyer

Works That Cite This (38)

Action Title Year Authors
+ PDF Chat A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes 2018 Ka Wa Tsang
Michiel Rollier
Archisman Ghosh
A. Samajdar
M. Agathos
Katerina Chatziioannou
VĂ­tor Cardoso
Gaurav Khanna
Chris Van Den Broeck
+ PDF Chat Bayesian inference analysis of unmodelled gravitational-wave transients 2018 F. Pannarale
R. Macas
P. J. Sutton
+ PDF Chat Impact of noise transients on gravitational-wave burst detection efficiency of the <i>BayesWave</i> pipeline with multidetector networks 2024 Yi Shuen C. Lee
M. Millhouse
A. Melatos
+ Posterior predictive checking for gravitational-wave detection with pulsar timing arrays: II. Posterior predictive distributions and pseudo Bayes factors 2023 P. M. Meyers
Katerina Chatziioannou
Michele Vallisneri
Alvin J. K. Chua
+ PDF Chat Bayesian reconstruction of gravitational wave bursts using chirplets 2018 M. Millhouse
N. Cornish
T. B. Littenberg
+ PDF Chat Testing Lorentz invariance of gravity in the Standard-Model Extension with GWTC-3 2022 Rui Niu
Tao Zhu
Wen Zhao
+ PDF Chat Bayesian reconstruction of gravitational-wave signals from binary black holes with nonzero eccentricities 2020 G. DĂĄlya
P. Raffai
B. BĂ©csy
+ PDF Chat Inferring the post-merger gravitational wave emission from binary neutron star coalescences 2017 Katerina Chatziioannou
J. A. Clark
Andreas Bauswein
M. Millhouse
T. B. Littenberg
N. Cornish
+ PDF Chat Distribution of effective spins and masses of binary black holes from the LIGO and Virgo O1–O3a observing runs 2021 Javier Roulet
Horng Sheng Chia
Seth Olsen
Liang Dai
Tejaswi Venumadhav
Barak Zackay
MatĂ­as Zaldarriaga
+ PDF Chat Observing the post-merger signal of GW170817-like events with improved gravitational-wave detectors 2019 Andoni Torres-Rivas
Katerina Chatziioannou
Andreas Bauswein
J. A. Clark

Works Cited by This (24)

Action Title Year Authors
+ PDF Chat Search for high frequency gravitational-wave bursts in the first calendar year of LIGO’s fifth science run 2009 B. P. Abbott
R. Abbott
R. X. Adhikari
P. Ajith
B. Allen
G. Allen
R. S. Amin
S. B. Anderson
W. G. Anderson
M. A. Arain
+ The search for gravitational wave bursts in data from the second LIGO science run 2005 Shourov Chatterji
+ PDF Chat Bayesian inference for spectral estimation of gravitational wave detector noise 2015 T. B. Littenberg
N. Cornish
+ Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations 2015 W. D. Vousden
W. M. Farr
Ilya Mandel
+ PDF Chat Detecting Gravitation-Wave Transients at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>5</mml:mn><mml:mi>σ</mml:mi></mml:mrow></mml:math>: A Hierarchical Approach 2015 E. Thrane
M. W. Coughlin
+ PDF Chat Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise 2006 Shourov Chatterji
A. Lazzarini
Leo C. Stein
P. J. Sutton
Antony Searle
Massimo Tinto
+ PDF Chat Multiresolution techniques for the detection of gravitational-wave bursts 2004 S. Chatterji
Lindy Blackburn
Guillermo MartĂ­n
E. Katsavounidis
+ Replica Monte Carlo Simulation of Spin-Glasses 1986 Robert H. Swendsen
Jian‐Sheng Wang
+ PDF Chat Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network 2010 J. Veitch
A. Vecchio
+ PDF Chat Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects 2008 Michele Vallisneri