$SL_k$-tilings of the plane

Type: Article

Publication Date: 2010-01-01

Citations: 25

DOI: https://doi.org/10.1215/ijm/1299679749

Abstract

We study properties of (bi-infinite) arrays having all adjacent $k\times k$ adjacent minors equal to one. If we further add the condition that all adjacent $(k-1)\times(k-1)$ minors be nonzero, then these arrays are necessarily of rank $k$. It follows that we can explicit construct all of them. Several nice properties are made apparent. In particular, we revisit, with this perspective, the notion of frieze patterns of Coxeter. This shed new light on their properties. A connexion is also established with the notion of $T$-systems of Statistical Physics.

Locations

  • Illinois Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ $SL_k$-Tiling of the Plane 2010 François Bergeron
Christophe Reutenauer
+ $SL_k$-Tiling of the Plane 2010 François Bergeron
Christophe Reutenauer
+ PDF Chat SL$_2 (\mathbb Z)$-tilings of the torus, Coxeter–Conway friezes and Farey triangulations 2016 Sophie Morier-Genoud
Valentin Ovsienko
Serge Tabachnikov
+ $SL_2(\mathbb{Z})$-tilings of the torus, Coxeter-Conway friezes and Farey triangulations 2014 Sophie Morier-Genoud
Valentin Ovsienko
Serge Tabachnikov
+ $SL_2(\mathbb{Z})$-tilings of the torus, Coxeter-Conway friezes and Farey triangulations 2014 Sophie Morier-Genoud
Valentin Ovsienko
Serge Tabachnikov
+ PDF Chat Correction to: The Structure of Multiplicative Tilings of the Real Line 2021 Mihail N. Kolountzakis
Yang Wang
+ PDF Chat Tilings of the plane, hyperbolic groups and small cancellation conditions 2001 Milé Krajčevski
+ All $SL_2$-tilings come from infinite triangulations 2016 Christine Bessenrodt
Thorsten Holm
Peter Jørgensen
+ All $SL_2$-tilings come from infinite triangulations 2016 Christine Bessenrodt
Thorsten Holm
Peter Jørgensen
+ PDF Chat All SL2-tilings come from infinite triangulations 2017 Christine Bessenrodt
Thorsten Holm
Peter Jørgensen
+ Tilings 2005 Federico Ardila
Richard P. Stanley
+ PDF Chat Structure of spaces of rhombus tilings in the lexicograhic case 2005 Éric Rémila
+ Lozenge Tilings and Hurwitz Numbers 2015 Jonathan Novak
+ A Pythagorean Tiling of the Plane 1989 Ernest J. Eckert
Hugo Haagensen
+ PDF Chat Conway and Aperiodic Tilings 2021 Charles Radin
+ A note on the structure of spaces of domino tilings 2006 Michel Morvan
Éric Rémila
Éric Thierry
+ Mini-Workshop: Friezes 2016 Thorsten Holm
Peter Jørgensen
Sophie Morier-Genoud
+ Square tilings with prescribed combinatorics 1993 Oded Schramm
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="normal">SL</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>-tilings and triangulations of the strip 2013 Thorsten Holm
Peter Jørgensen
+ PDF Chat $\it \Pi^0_1$ Sets and Tilings 2011 Emmanuel Jeandel
Pascal Vanier