Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Quantitative bounds for sets lacking homogeneous polynomial progressions
Sean Prendiville
Type:
Preprint
Publication Date:
2014-09-29
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Quantitative bounds in the polynomial Szemerédi theorem: the homogeneous case
2017
Sean Prendiville
+
Quantitative bounds in the nonlinear Roth theorem
2019
Sarah Peluse
Sean Prendiville
+
Further bounds in the polynomial Szemerédi theorem over finite fields
2019
Borys Kuca
+
PDF
Chat
Quantitative concatenation for polynomial box norms
2024
Noah Kravitz
Borys Kuca
James Leng
+
Lower bounds in the polynomial Szemerédi theorem
2019
Khalid Younis
+
Uniformity in the polynomial Szemérdi theorem
2010
Vitaly Bergelson
Randall McCutcheon
Mark Pollicott
Klaus Schmidt
+
PDF
Chat
Bounds for sets with no polynomial progressions
2020
Sarah Peluse
+
Irreducible polynomials in arithmetic progressions and a problem of Szegedy
2004
Lajos Hajdu
+
Polynomials and Primes in Generalized Arithmetic Progressions (Revised Version)
2013
Ernie Croot
Neil Lyall
Alex Rice
+
Polynomial Configurations in Difference Sets (Revised Version)
2009
Neil Lyall
Ăkos Magyar
+
Polynomial Configurations in Difference Sets (Revised Version)
2009
Neil Lyall
Ăkos Magyar
+
A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$
2022
James Leng
+
Further bounds in the polynomial Szemer
2021
Borys Kuca
+
PDF
Chat
Polynomials and Primes in Generalized Arithmetic Progressions
2014
Ernie Croot
Neil Lyall
Alex Rice
+
Polynomials and Primes in Generalized Arithmetic Progressions
2013
Ernie Croot
Neil Lyall
Alex Rice
+
Refinements to the prime number theorem for arithmetic progressions
2021
Jesse Thorner
Asif Zaman
+
On product sets of arithmetic progressions
2022
Max Wenqiang Xu
Yunkun Zhou
+
On restricted arithmetic progressions over finite fields
2012
Brian Cook
Ăkos Magyar
+
On restricted arithmetic progressions over finite fields
2010
Brian J. Cook
Ăkos Magyar
+
PDF
Chat
Bounds in a popular multidimensional nonlinear Roth theorem
2024
Sarah Peluse
Sean Prendiville
Xuancheng Shao
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (5)
Action
Title
Year
Authors
+
PDF
Chat
Polynomial extensions of van der Waerdenâs and SzemerĂ©diâs theorems
1996
Vitaly Bergelson
A. Leibman
+
PDF
Chat
AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM
2008
Ben Green
Terence Tao
+
PDF
Chat
On arithmetic structures in dense sets of integers
2002
Ben Green
+
PDF
Chat
Intersective sets given by a polynomial
2006
Jason Lucier
+
PDF
Chat
A quantitative improvement for Roth's theorem on arithmetic progressions: Table 1.
2016
Thomas F. Bloom