Effective hydrodynamic field theory and condensation picture of topological insulators

Type: Article

Publication Date: 2016-04-14

Citations: 26

DOI: https://doi.org/10.1103/physrevb.93.155122

Abstract

While many features of topological band insulators are commonly discussed at the level of single-particle electron wave functions, such as the gapless Dirac boundary spectrum, it remains elusive to develop a hydrodynamic or collective description of fermionic topological band insulators in 3+1 dimensions. As the Chern-Simons theory for the 2+1-dimensional quantum Hall effect, such a hydrodynamic effective field theory provides a universal description of topological band insulators, even in the presence of interactions, and that of putative fractional topological insulators. In this paper, we undertake this task by using the functional bosonization. The effective field theory in the functional bosonization is written in terms of a two-form gauge field, which couples to a $U(1)$ gauge field that arises by gauging the continuous symmetry of the target system [the $U(1)$ particle number conservation]. Integrating over the $U(1)$ gauge field by using the electromagnetic duality, the resulting theory describes topological band insulators as a condensation phase of the $U(1)$ gauge theory (or as a monopole condensation phase of the dual gauge field). The hydrodynamic description of the surface of topological insulators and the implication of its duality are also discussed. We also touch upon the hydrodynamic theory of fractional topological insulators by using the parton construction.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Effective field theories for topological insulators by functional bosonization 2013 AtMa P. O. Chan
Taylor L. Hughes
Shinsei Ryu
Eduardo Fradkin
+ PDF Chat Topological BF theory of the quantum hydrodynamics of incompressible polar fluids 2014 Apoorv Tiwari
Xiaohong Chen
Titus Neupert
Luiz H. Santos
Shinsei Ryu
Claudio Chamon
Christopher Mudry
+ PDF Chat Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry 2016 Peng Ye
Taylor L. Hughes
Joseph Maciejko
Eduardo Fradkin
+ On the Chern-Simons Gauge Field 1995 Daniel G. Barci
L. E. Oxman
+ Composite Particle Theory, Fractional Axion Angles, and Extrinsic Twist Defects in Three-Dimensional Gapped Fermionic Phases 2016 Peng Ye
Taylor L. Hughes
Joseph Maciejko
Eduardo Fradkin
+ PDF Chat Three-dimensional topological insulators and bosonization 2017 Andrea Cappelli
Enrico Randellini
Jacopo Sisti
+ PDF Chat Topological superconductivity, topological confinement, and the vortex quantum Hall effect 2011 M. C. Diamantini
Carlo A. Trugenberger
+ PDF Chat Charge and spin fractionalization in strongly correlated topological insulators 2012 Predrag Nikolić
+ PDF Chat Quantum wires, Chern-Simons theory, and dualities in the quantum Hall system 2022 Julio Toledo
Renann Lipinski Jusinskas
Carlos A. Hernaski
Pedro R. S. Gomes
+ PDF Chat Hydrodynamics, anomaly inflow and bosonic effective field theory 2024 Alexander G. Abanov
Andrea Cappelli
+ PDF Chat Gauge theory for topological waves in continuum fluids with odd viscosity 2024 Keisuke Fujii
Yuto Ashida
+ A 3-dimensional bosonic topological insulator and its electromagnetic response 2013 Peng Ye
Xiao-Gang Wen
+ PDF Chat Effective theory of fractional topological insulators in two spatial dimensions 2013 Predrag Nikolić
+ PDF Chat TOPOLOGICAL EFFECTIVE FIELD THEORIES FOR DIRAC FERMIONS FROM INDEX THEOREM 2013 Giandomenico Palumbo
R. Catenacci
Annalisa Marzuoli
+ PDF Chat Hydrodynamic theory of surface excitations of three-dimensional topological insulators 2011 N. M. Vildanov
+ PDF Chat Gauge theory of composite fermions: Particle-flux separation in quantum Hall systems 2003 Ikuo Ichinose
Tetsuo Matsui
+ PDF Chat Relativistic gravity and parity-violating nonrelativistic effective field theories 2015 Chaolun Wu
Shao-Feng Wu
+ Relativistic Gravity and Non-Relativistic Effective Field Theories 2014 Chaolun Wu
Shaofeng Wu
+ PDF Chat Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators 2015 Martin Claassen
Ching Hua Lee
Ronny Thomale
Xiao-Liang Qi
Thomas Devereaux
+ Towards a Complete Topological Quantum Field Theory Description for Bosonic Symmetry-Protected-Topological Phases with Abelian Symmetry in Three Dimensions 2015 Peng Ye
Zheng‐Cheng Gu

Works That Cite This (22)

Action Title Year Authors
+ PDF Chat Wilson operator algebras and ground states of coupled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="italic">BF</mml:mi></mml:math> theories 2017 Apoorv Tiwari
Xiao Chen
Shinsei Ryu
+ PDF Chat Field theoretic aspects of condensed matter physics: An overview 2023 Eduardo Fradkin
+ Quantum field theory of topological spin dynamics 2020 Predrag Nikolić
+ PDF Chat Three-dimensional topological insulators and bosonization 2017 Andrea Cappelli
Enrico Randellini
Jacopo Sisti
+ PDF Chat Lattice Boltzmann method for semiclassical fluids 2018 Rodrigo C. V. Coelho
Mauro M. Doria
+ PDF Chat Nonlocal order parameters for states with topological electromagnetic response 2020 Thomas Klein Kvorning
Christian Spånslätt
AtMa P. O. Chan
Shinsei Ryu
+ PDF Chat Braiding with Borromean Rings in ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> )-Dimensional Spacetime 2018 AtMa P. O. Chan
Peng Ye
Shinsei Ryu
+ PDF Chat Fractional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>S</mml:mi></mml:math> -duality, classification of fractional topological insulators, and surface topological order 2017 Peng Ye
Meng Cheng
Eduardo Fradkin
+ PDF Chat Decorated defect condensate: A window to unconventional quantum phases in Weyl semimetals 2016 Yizhi You
+ PDF Chat Topological orders of monopoles and hedgehogs: From electronic and magnetic spin-orbit coupling to quarks 2020 Predrag Nikolić

Works Cited by This (61)

Action Title Year Authors
+ PDF Chat Exactly soluble model of a three-dimensional symmetry-protected topological phase of bosons with surface topological order 2014 F. J. Burnell
Xie Chen
Lukasz Fidkowski
Ashvin Vishwanath
+ PDF Chat Topological field theory of time-reversal invariant insulators 2008 Xiao‐Liang Qi
Taylor L. Hughes
Shou-Cheng Zhang
+ PDF Chat Classification of Interacting Electronic Topological Insulators in Three Dimensions 2014 Chong Wang
Andrew C. Potter
T. Senthil
+ Charge Spin Separation in 3D 2011 M. C. Diamantini
Carlo A. Trugenberger
+ SL(2, Z) ACTION ON THREE-DIMENSIONAL CONFORMAL FIELD THEORIES WITH ABELIAN SYMMETRY 2005 Edward Witten
+ PDF Chat Symmetry-respecting topologically ordered surface phase of three-dimensional electron topological insulators 2015 Max A. Metlitski
C. L. Kane
Matthew P. A. Fisher
+ PDF Chat Surface Collective Modes in the Topological Insulators<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Se</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow… 2015 Anshul Kogar
Sean Vig
A. Thaler
Man Hoi Wong
Yiran Xiao
Dalmau Reig‐i‐Plessis
Gil Young Cho
T. Valla
Z.-H. Pan
John Schneeloch
+ $S$-duality of $u(1)$ gauge theory with $\theta =\pi$ on non-orientable manifolds: Applications to topological insulators and superconductors 2015 Max A. Metlitski
+ PDF Chat Three-dimensional topological lattice models with surface anyons 2013 Curt von Keyserlingk
F. J. Burnell
Steven H. Simon
+ PDF Chat Classification of topological quantum matter with symmetries 2016 Ching‐Kai Chiu
Jeffrey C. Y. Teo
Andreas P. Schnyder
Shinsei Ryu