A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature

Type: Article

Publication Date: 2015-10-29

Citations: 92

DOI: https://doi.org/10.4171/jems/553

Abstract

In this paper we consider Riemannian manifolds (M^n,g) of dimension n \geq 5 , with semi-positive Q -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green's function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q -curvature. Modifying the test function construction of Esposito-Robert, we show that it is possible to choose an initial conformal metric so that the flow has a sequential limit which is smooth and positive, and defines a conformal metric of constant positive Q -curvature.

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal of the European Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature 2014 Matthew J. Gursky
Andrea Malchiodi
+ A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature 2014 Matthew J. Gursky
Andrea Malchiodi
+ "Large" conformal metrics of prescribed Q-curvature in the negative case 2016 Luca Galimberti
+ <i>Q</i> Curvature on a Class of 3‐Manifolds 2014 Fengbo Hang
Paul Yang
+ PDF Chat <i>Q</i>‐Curvature on a Class of Manifolds with Dimension at Least 5 2015 Fengbo Hang
Paul Yang
+ Q curvature on a class of manifolds with dimension at least 5 2014 Fengbo Hang
Paul Yang
+ PDF Chat “Large” conformal metrics of prescribed $$\varvec{Q}$$-curvature in the negative case 2017 Luca Galimberti
+ Non-compactness of the Prescribed Q-curvature Problem in Large Dimensions 2009 Juncheng Wei
Chunyi Zhao
+ Positivity of Paneitz operators 2001 Xingwang Xu
Paul Yang
+ The Paneitz-Sobolev constant of a closed Riemannian manifold and an application to the nonlocal $\mathbf{Q}$-curvature flow 2014 Xuezhang Chen
+ Riemannian manifolds with positive Yamabe invariant and Paneitz operator 2015 Matthew J. Gursky
Fengbo Hang
Yueh-Ju Lin
+ The<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>Q</mml:mi></mml:math>-curvature on a 4-dimensional Riemannian manifold<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mi>M</mml:mi><mml:mo>,</mml:mo><mml:mi>g</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" 
 2012 Jiayu Li
Yuxiang Li
Pan Liu
+ A scalar curvature flow in low dimensions 2015 Martin Mayer
+ A scalar curvature flow in low dimensions 2015 Martin Mayer
+ A nonlocal $\mathbf Q$-curvature flow on a class of closed manifolds of dimension $\mathbf{n \geq 5}$ 2015 Xuezhang Chen
+ PDF Chat Constant $Q$-curvature metrics on a product Riemannian manifold 2024 SalomĂłn AlarcĂłn
SimĂłn MasnĂș
Pedro Montero
Carolina Rey
+ Riemannian curvature: variations on different notions of positivity 2006 Mohammed Larbi Labbi
+ A note on the strong maximum principle for fully nonlinear equations on Riemannian manifolds 2020 Alessandro Goffi
Francesco Pediconi
+ A note on the strong maximum principle for fully nonlinear equations on Riemannian manifolds 2020 Alessandro Goffi
Francesco Pediconi
+ The $Q$-curvature and manifolds with positive Yamabe invariant 2015 Matthew J. Gursky
Yueh-Ju Lin