Transformations of harmonic bundles and Willmore surfaces

Type: Preprint

Publication Date: 2012-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1201.0190

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Transformations of Generalized Harmonic Bundles and Constrained Willmore Surfaces 2021 Áurea Casinhas Quintino
+ Constrained Willmore Surfaces 2021 Áurea Casinhas Quintino
+ Equivariant Willmore surfaces in conformal homogeneous three spaces 2013 Manuel Barros
Ángel Ferrández
Óscar J. Garay
+ Spectral deformation and Bäcklund transformation of constrained Willmore surfaces 2011 Áurea Casinhas Quintino
+ Constrained Willmore Surfaces: Symmetries of a Moebius Invariant Integrable System 2009 Áurea Casinhas Quintino
+ Minimal Surfaces Under Constrained Willmore Transformation 2021 Áurea Casinhas Quintino
+ PDF Chat Willmore surfaces in spheres via loop groups: a survey 2024 Josef F. Dorfmeister
Peng Wang
+ Constrained Willmore Surfaces and the Isothermic Surface Condition 2021 Áurea Casinhas Quintino
+ Constrained Willmore Surfaces with a Conserved Quantity 2021 Áurea Casinhas Quintino
+ The Euler–Lagrange ConstrainedWillmore Surface Equation 2021 Áurea Casinhas Quintino
+ A Sharp Characterization of the Willmore Invariant 2021 Samuel Blitz
+ PDF Chat A sharp characterization of the Willmore invariant 2023 Samuel Blitz
+ Rolling spheres and the Willmore energy 2023 Felix Knöppel
Ulrich Pinkall
Peter Schröder
Yousuf Soliman
+ PDF Chat WEIERSTRASS–KENMOTSU REPRESENTATION OF WILLMORE SURFACES IN SPHERES 2020 Josef F. Dorfmeister
Peng Wang
+ On the Björling problem for Willmore surfaces 2014 David Brander
Peng Wang
+ Willmore surfaces in 4-dimensional conformal manifolds 2023 Changping Wang
Zhenxiao Xie
+ PDF Chat On the Björling problem for Willmore surfaces 2018 David Brander
Peng Wang
+ Towards a constrained Willmore conjecture 2017 Lynn Heller
Franz Pedit
+ PDF Chat Towards a Constrained Willmore Conjecture 2017 Lynn Heller
Franz Pedit
+ Willmore surfaces in spheres: the DPW approach via the conformal Gauss map 2019 Josef F. Dorfmeister
Peng Wang

Works That Cite This (0)

Action Title Year Authors