State Space representation of non-stationary Gaussian Processes.

Type: Preprint

Publication Date: 2016-01-07

Citations: 6

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ State Space representation of non-stationary Gaussian Processes 2016 Alessio Benavoli
Marco Zaffalon
+ PDF Chat Gaussian Process kernels for popular state-space time series models 2016 Alexander Grigorievskiy
Juha Karhunen
+ Gaussian Process Kernels for Popular State-Space Time Series Models 2016 Alexander Grigorievskiy
Juha Karhunen
+ Gaussian Process Kernels for Popular State-Space Time Series Models 2016 Alexander Grigorievskiy
Juha Karhunen
+ State Space Gaussian Processes with Non-Gaussian Likelihood 2018 Hannes Nickisch
Arno Solin
Alexander Grigorievskiy
+ State Space Gaussian Processes with Non-Gaussian Likelihood 2018 Hannes Nickisch
Arno Solin
Alexander Grigorievskiy
+ Identification of Gaussian Process State Space Models 2017 Stefanos Eleftheriadis
Thomas F. W. Nicholson
Marc Peter Deisenroth
James Hensman
+ Identification of Gaussian Process State Space Models 2017 Stefanos Eleftheriadis
Thomas F. W. Nicholson
Marc Peter Deisenroth
James Hensman
+ State-space deep Gaussian processes with applications 2021 Zheng Zhao
+ Linear-time inference for Gaussian Processes on one dimension 2020 Jackson Loper
David M. Blei
John P. Cunningham
Liam Paninski
+ Linear-time inference for Gaussian Processes on one dimension 2020 Jackson Loper
David M. Blei
John P. Cunningham
Liam Paninski
+ A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes 2023 Marcus M. Noack
Hengrui Luo
Mark D. Risser
+ Towards Flexibility and Interpretability of Gaussian Process State-Space Model 2023 Zhid Lin
Feng Yin
+ Unscented Gaussian Process Latent Variable Model: learning from uncertain inputs with intractable kernels. 2019 Daniel Augusto de Souza
César Mattos
João P. P. Gomes
+ State Space Models 2008 Andrew Harvey
+ State Space Models 2018 Andrew Harvey
+ A NON-GAUSSIAN FAMILY OF STATE-SPACE MODELS WITH EXACT MARGINAL LIKELIHOOD 2013 Dani Gamerman
Thiago Rezende dos Santos
Glaura C. Franco
+ A flexible state space model for learning nonlinear dynamical systems 2016 Andreas Svensson
Thomas B. Schön
+ A flexible state space model for learning nonlinear dynamical systems 2016 Andreas Svensson
Thomas B. Schön
+ PDF Chat A unifying perspective on non-stationary kernels for deeper Gaussian processes 2024 Marcus M. Noack
Hengrui Luo
Mark D. Risser