On the critical exponent for the Schrödinger equation with a nonlinear boundary condition

Type: Article

Publication Date: 2004-01-01

Citations: 6

DOI: https://doi.org/10.57262/die/1356060247

Abstract

We study the Schrödinger equation: $iu_t+u_{xx}=0,$ $ x\in {\bf R}_+,$ $ t>0$ with a nonlinear boundary condition $-u_x(0,t)=\vert u(0,t)\vert ^{p-1} u(0,t),$ $ t>0$. We show that if $1 <p <3,$ every solution is global in $H^1({\bf R}_+)$, while if $p\ge 3$, then nonglobal solutions exist.

Locations

  • Differential and Integral Equations - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Critical nonlinear Schrödinger equations in higher space dimensions 2018 Nakao Hayashi
Chunhua Li
Pavel I. Naumkin
+ Existence and concentration of ground state solution to a nonlocal Schrödinger equation 2023 Anmin Mao
Qian Zhang
+ PDF Chat Normalized solutions for nonlinear Schr\"odinger equations with $L^2$-critical nonlinearity 2024 Silvia Cingolani
Marco Gallo
Norihisa Ikoma
Kazunaga Tanaka
+ On the critical exponent for nonlinear Schrödinger equations without gauge invariance in exterior domains 2018 Mohamed Jleli
Bessem Samet
+ Critical exponent for global existence of solutions to the Schrödinger equation with a nonlinear boundary condition 2023 Nakao Hayashi
Chunhua Li
Takayoshi Ogawa
Takuya Sato
+ Ground states for a system of Schrödinger equations with critical exponent 2012 Zhijie Chen
Wenming Zou
+ The nonlinear Schr 2005 Terence Tao
Monica Vişan
Xiaoyi Zhang
+ PDF Chat Existence and concentration of ground state solution to a nonlocal Schrödinger equation 2020 Anmin Mao
Qian Zhang
+ Solutions concentrating around the saddle points of the potential for Schrödinger equations with critical exponential growth 2018 J. Zhang
João Marcos do Ó
Pawan Kumar Mishra
+ PDF Chat On the new critical exponent for the nonlinear Schrödinger equations 2013 Nakao Hayashi
Pavel I. Naumkin
+ Local well-posedness for the $H^2$-critical nonlinear Schr\"odinger equation 2013 Thierry Cazenave
Daoyuan Fang
Zheng Han
+ Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation 2013 Thierry Cazenave
Daoyuan Fang
Han Zheng
+ PDF Chat On a semilinear Schrödinger equation with critical Sobolev exponent 2001 J. Chabrowski
Andrzej Szulkin
+ PDF Chat Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation 2015 Thierry Cazenave
Daoyuan Fang
Zheng Han
+ On the critical norm concentration for the inhomogeneous nonlinear Schr\"odinger equation 2018 Luccas Campos
Mykael Cardoso
+ PDF Chat On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D 2001 Galina Perelman
+ On the critical nongauge invariant nonlinear Schrödinger equation 2011 Pavel I. Naumkin
Isahi Sánchez-Suárez
+ PDF Chat WEAK POTENTIAL CONDITIONS FOR SCHRÖDINGER EQUATIONS WITH CRITICAL NONLINEARITIES 2015 Xianhua Tang
Sitong Chen
+ PDF Chat EXISTENCE AND NON-EXISTENCE FOR SCHRÖDINGER EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS 2010 Henghui Zou
+ Positive ground states for a system of Schr\"odinger equations with critically growing nonlinearities 2014 Pietro d’Avenia
Jarosław Mederski