Mott insulating states and quantum phase transitions of correlated<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>SU</mml:mtext><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>Dirac fermions

Type: Article

Publication Date: 2016-06-29

Citations: 65

DOI: https://doi.org/10.1103/physrevb.93.245157

Abstract

The interplay between charge and spin degrees of freedom in strongly correlated fermionic systems, in particular of Dirac fermions, is a long-standing problem in condensed matter physics. We investigate the competing orders in the half-filled $\mathrm{SU}(2N)$ Hubbard model on a honeycomb lattice, which can be accurately realized in optical lattices with ultracold large-spin alkaline-earth fermions. Employing large-scale projector determinant quantum Monte Carlo simulations, we have explored quantum phase transitions from the gapless Dirac semimetals to the gapped Mott insulating phases in the SU(4) and SU(6) cases. Both of these Mott insulating states are found to be columnar valence bond solid (cVBS) and to be absent of the antiferromagnetic N\'eel ordering and the loop current ordering. Inside the cVBS phases, the dimer ordering is enhanced by increasing fermion components and behaves nonmonotonically as the interaction strength increases. Although the transitions generally should be of first order due to a cubic invariance possessed by the cVBS order, the coupling to gapless Dirac fermions can soften the transitions to second order through a nonanalytic term in the free energy. Our simulations provide important guidance for the experimental explorations of novel states of matter with ultracold alkaline-earth fermions.

Locations

  • Physical review. B./Physical review. B - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Slater and Mott insulating states in the SU(6) Hubbard model 2019 Da Wang
Lei Wang
Congjun Wu
+ PDF Chat Mott insulating states of the anisotropic SU(4) Dirac fermions 2024 Han Xu
Yu Wang
Zhichao Zhou
Congjun Wu
+ Mott insulating states of the anisotropic SU(4) Dirac fermions 2019 Xu Han
Yu Wang
Zhichao Zhou
Congjun Wu
+ PDF Chat Finite-temperature valence-bond-solid transitions and thermodynamic properties of interacting<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>SU</mml:mtext><mml:mo>(</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>N</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:math>Dirac fermions 2017 Zhichao Zhou
Da Wang
Congjun Wu
Yu Wang
+ PDF Chat Chiral<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi></mml:math>-wave superconductivity on the honeycomb lattice close to the Mott state 2014 Annica M. Black‐Schaffer
Wéi Wú
Karyn Le Hur
+ Metal-insulator transition and quantum magnetism in the SU(3) Fermi-Hubbard Model: Disentangling Nesting and the Mott Transition 2023 Chunhan Feng
Eduardo Ibarra-García-Padilla
Kaden R. A. Hazzard
Richard Scalettar
Shiwei Zhang
Ettore Vitali
+ PDF Chat Mott insulating phases and quantum phase transitions of interacting spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mstyle></mml:math>fermionic cold atoms in optical lattices at half filling 2007 Hong-Hao Tu
Guang-Ming Zhang
Lu Yu
+ PDF Chat Phase diagrams of one-dimensional half-filled two-orbital<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">SU</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:math>cold fermion systems 2015 V. Bois
Sylvain Capponi
P. Lecheminant
M. Moliner
K. Totsuka
+ Theory of Dirac Spin-Orbital Liquids: monopoles, anomalies, and applications to $SU(4)$ honeycomb models 2021 Vladimir Calvera
Chong Wang
+ PDF Chat Mott physics in the half-filled Hubbard model on a family of vortex-full square lattices 2014 Dominik Ixert
Fakher F. Assaad
K. P. Schmidt
+ PDF Chat Phase diagram of interacting spinless fermions on the honeycomb lattice: A comprehensive exact diagonalization study 2015 Sylvain Capponi
Andreas M. Läuchli
+ PDF Chat Affleck-Kennedy-Lieb-Tasaki State on a Honeycomb Lattice from<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>g</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>Orbitals 2015 Maciej Koch-Janusz
D. I. Khomskiǐ
Eran Sela
+ PDF Chat Mott transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>π</mml:mi></mml:math> -flux <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> Hubbard model on a square lattice 2018 Zhichao Zhou
Congjun Wu
Yu Wang
+ PDF Chat Competing valence bond and symmetry-breaking Mott states of spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>fermions on a honeycomb lattice 2016 Dávid Jakab
E. Szirmai
Maciej Lewenstein
G. Szirmai
+ PDF Chat Dimerized Solids and Resonating Plaquette Order in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Dirac Fermions 2013 Thomas C. Lang
Zi Yang Meng
Alejandro Muramatsu
Stefan Weßel
Fakher F. Assaad
+ Quantum Monte Carlo simulations of the attractive SU(3) Hubbard model on a honeycomb lattice 2019 Xu Han
Zhichao Zhou
Xin Wang
Lei Wang
Yu Wang
+ PDF Chat SU(3) fermions on the honeycomb lattice at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:mfrac></mml:math> filling 2019 Sangwoo S. Chung
Philippe Corboz
+ Emergence of Competing Orders and Possible Quantum Spin Liquid in SU(N) Fermions 2022 Xue-Jia Yu
Shao-Hang Shi
Limei Xu
Zi-Xiang Li
+ PDF Chat Suppression of topological Mott-Hubbard phases by multiple charge orders in the honeycomb extended Hubbard model 2018 Mario Bijelic
Ryui Kaneko
Claudius Gros
Roser Valentí
+ PDF Chat Mott insulating state and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi><mml:mo>+</mml:mo><mml:mi>i</mml:mi><mml:mi>d</mml:mi></mml:mrow></mml:math> superconductivity in an ABC graphene trilayer 2021 Huijia Dai
Junchen Hou
Xiao Zhang
Ying Liang
Tianxing Ma

Works That Cite This (60)

Action Title Year Authors
+ PDF Chat Mott transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>π</mml:mi></mml:math> -flux <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo>(</mml:mo><mml:mn>4</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> Hubbard model on a square lattice 2018 Zhichao Zhou
Congjun Wu
Yu Wang
+ PDF Chat Dirac fermions with plaquette interactions. I. SU(2) phase diagram with Gross-Neveu and deconfined quantum criticalities 2022 Yuan Da Liao
Xiao Yan Xu
Zi Yang Meng
Yang Qi
+ PDF Chat Interaction Effects with Varying <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math> in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math> Symmetric Fermion Lattice Systems 2018 Shenglong Xu
Julio T. Barreiro
Yu Wang
Congjun Wu
+ PDF Chat Fermion-enhanced first-order phase transition and chiral Gross-Neveu tricritical point 2021 Yuzhi Liu
Zi Yang Meng
Shuai Yin
+ PDF Chat Finite-temperature valence-bond-solid transitions and thermodynamic properties of interacting<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>SU</mml:mtext><mml:mo>(</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>N</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:math>Dirac fermions 2017 Zhichao Zhou
Da Wang
Congjun Wu
Yu Wang
+ PDF Chat Antiferromagnetic transitions of Dirac fermions in three dimensions 2020 Yiqun Huang
Huaiming Guo
Joseph Maciejko
Richard Scalettar
Shiping Feng
+ PDF Chat Onset of charge incompressibility and Mott gaps in the honeycomb-lattice SU(4) Hubbard model: Lessons for twisted bilayer graphene systems 2022 Rahul Hingorani
J. Oitmaa
Rajiv Singh
+ PDF Chat Kekulé valence bond order in an extended Hubbard model on the honeycomb lattice with possible applications to twisted bilayer graphene 2018 Xiao Yan Xu
K. T. Law
Patrick A. Lee
+ PDF Chat Correlation-Induced Insulating Topological Phases at Charge Neutrality in Twisted Bilayer Graphene 2021 Yuan Da Liao
Jian Kang
Clara N. Breiø
Xiao Yan Xu
Han-Qing Wu
Brian M. Andersen
Rafael M. Fernandes
Zi Yang Meng
+ PDF Chat Dirac Fermions with Competing Orders: Non-Landau Transition with Emergent Symmetry 2017 Toshihiro Sato
Martin Hohenadler
Fakher F. Assaad

Works Cited by This (43)

Action Title Year Authors
+ PDF Chat Realization of a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>6</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>System of Fermions in a Cold Atomic Gas 2010 Shintaro Taie
Yosuke Takasu
Seiji Sugawa
Rekishu Yamazaki
Takuya Tsujimoto
Ryo Murakami
Yoshiro Takahashi
+ PDF Chat Lattice Model for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>Néel to Valence-Bond Solid Quantum Phase Transition at Large<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math> 2012 Ribhu K. Kaul
Anders W. Sandvik
+ PDF Chat Pomeranchuk Cooling of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>SU</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>Ultracold Fermions in Optical Lattices 2013 Zi Cai
Hsiang-Hsuan Hung
Lei Wang
Dong Zheng
Congjun Wu
+ PDF Chat Degenerate Fermi Gas of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts><mml:mi>Sr</mml:mi><mml:mprescripts /><mml:none /><mml:mn>87</mml:mn></mml:mmultiscripts></mml:math> 2010 B. J. DeSalvo
Mi Yan
P. G. Mickelson
Y. N. Martinez de Escobar
T. C. Killian
+ PDF Chat Gossamer superconductivity and antiferromagnetism in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>t</mml:mi><mml:mtext>‐</mml:mtext><mml:mi>J</mml:mi><mml:mtext>‐</mml:mtext><mml:mi>U</mml:mi></mml:mrow></mml:math>model 2005 Feng Yuan
Qingshan Yuan
C. S. Ting
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mtext>SU</mml:mtext><mml:mrow><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>Heisenberg model on the square lattice: A continuous-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math>quantum Monte Carlo study 2009 K. S. D. Beach
Fabien Alet
Matthieu Mambrini
Sylvain Capponi
+ PDF Chat Particle-hole symmetry and interaction effects in the Kane-Mele-Hubbard model 2011 Dong Zheng
Guang-Ming Zhang
Congjun Wu
+ PDF Chat Many-body physics with ultracold gases 2008 Immanuel Bloch
Jean Dalibard
W. Zwerger
+ PDF Chat Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice 2012 Sandro Sorella
Yuichi Otsuka
Seiji Yunoki
+ PDF Chat Néel and Spin-Peierls Ground States of Two-Dimensional<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="normal">S</mml:mi><mml:mi mathvariant="normal">U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>Quantum Antiferromagnets 2003 Kenji Harada
Naoki Kawashima
Matthias Troyer