Every natural number is the sum of forty-nine palindromes

Type: Preprint

Publication Date: 2015-01-01

Citations: 6

DOI: https://doi.org/10.48550/arxiv.1508.04721

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Represent a natural number as the sum of palindromes in various bases 2015 Yu Gao
+ PDF Chat NUMERIC PALINDROMES IN PRIMITIVE AND NON PRIMITIVE PYTHAGOREAN TRIPLES 2015 John Rafael M. Antalan
Richard P. Tagle
+ Numeric Palindromes in Primitive and Non-primitive Pythagorean Triples 2015 John Rafael M. Antalan
Richard P. Tagle
+ On a conjecture of John Hoffman regarding sums of palindromic numbers 2015 Markus Sigg
+ Every positive integer is a sum of three palindromes 2017 Javier Cilleruelo
Florian Luca
Lewis Baxter
+ Every positive integer is a sum of three palindromes 2016 Javier Cilleruelo
Florian Luca
Lewis Baxter
+ Every positive integer is a sum of three palindromes 2016 Javier Cilleruelo
Florian Luca
Lewis Baxter
+ PDF Chat v-palindromes: an analogy to the palindromes 2021 Daniel Tsai
+ v-palindromes: an analogy to the palindromes 2021 Daniel Tsai
+ PDF Chat On the Numbers of Palindromes 2016 Sejeong Bang
Yan‐Quan Feng
Jaeun Lee
+ Characterization and enumeration of palindromic numbers whose squares are also palindromic 2020 Amitabha Tripathi
+ The Decimal System of Numbers 2015 Dana Pond Colburn
+ The Decimal System of Numbers 1915 L. C. Karpinski
+ Moving Forward and Backward with Palindromes 2004 Diane P. Schiller
Mary Charles
+ Antipalindromic numbers 2020 Ľubomíra Dvořáková
Stanislav Kruml
David Ryzak
+ Antipalindromic numbers 2020 Ľubomíra Dvořáková
Stanislav Kruml
David Ryzak
+ On the least number of palindromes contained in an infinite word 2013 Gabriele Fici
Luca Q. Zamboni
+ Digits of Numbers 2009 Titu Andreescu
Dorin Andrica
+ Decimals 1976 Robert W. Prielipp
+ PDF Chat Antipalindromic numbers 2021 Ľubomíra Dvořáková
Stanislav Kruml
David Ryzák