The Blanchet-Khovanov algebras

Type: Preprint

Publication Date: 2015-10-16

Citations: 7

Abstract

Blanchet introduced certain singular cobordisms to fix the functoriality of Khovanov homology. In this paper we introduce graded algebras consisting of such singular cobordisms a la Blanchet. As the main result we give algebraic versions of these algebras using the combinatorics of arc diagrams.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Blanchet-Khovanov algebras 2017 Michael Ehrig
Catharina Stroppel
Daniel Tubbenhauer
+ Singular TQFTs, foams and type D arc algebras 2019 Michael Ehrig
Daniel Tubbenhauer
Arik Wilbert
+ Singular TQFTs, foams and type D arc algebras 2016 Michael Ehrig
Daniel Tubbenhauer
Arik Wilbert
+ A cobordism category attached to Khovanov-Rozansky link homologies based on operads 2019 Gisa Schäfer
Y. Yonezawa
+ PDF Chat Functoriality of Khovanov homology 2020 Pierre Vogel
+ PDF Chat Singular TQFTs, Foams and Type D Arc Algebras 2019 Michael Ehrig
Daniel Tubbenhauer
Arik Wilbert
+ Functoriality of Khovanov homology 2015 Pierre Vogel
+ Functoriality of Khovanov homology 2015 Pierre Vogel
+ The Khovanov homology of the jumping jack 2015 Dido Uvaldo Salazar-Torres
+ gl(2) foams and the Khovanov homotopy type 2021 Vyacheslav Krushkal
Paul Wedrich
+ Homotopy Batalin-Vilkovisky algebras 2009 Imma Gálvez-Carrillo
Andrew Tonks
Bruno Vallette
+ Homotopy Batalin-Vilkovisky algebras 2009 Imma Gálvez-Carrillo
Andrew Tonks
Bruno Vallette
+ PDF Chat Homotopy Batalin–Vilkovisky algebras 2012 Imma Gálvez-Carrillo
Andrew Tonks
Bruno Valette
+ PDF Chat A 2-category of chronological cobordisms and odd Khovanov homology 2014 Krzysztof K. Putyra
+ A 2-category of chronological cobordisms and odd Khovanov homology 2013 Krzysztof K. Putyra
+ A 2-category of chronological cobordisms and odd Khovanov homology 2013 Krzysztof K. Putyra
+ Cobordisms with chronologies and a generalisation of the Khovanov complex 2010 Krzysztof K. Putyra
+ PDF Chat Maurer-Cartan methods in deformation theory: the twisting procedure 2022 Vladimir Dotsenko
Sergey Shadrin
Bruno Vallette
+ Odd Khovanov homology for tangles 2020 Grégoire Naisse
Krzysztof K. Putyra
+ On Khovanov complexes 2020 Noboru Ιτο