Almost-spanning universality in random graphs (Extended abstract)

Type: Article

Publication Date: 2015-11-01

Citations: 0

DOI: https://doi.org/10.1016/j.endm.2015.06.030

Abstract

A graph G is said to be H(n,Δ)-universal if it contains every graph on n vertices with maximum degree at most Δ. It is known that for any ε>0 and any natural number Δ there exists c>0 such that the random graph G(n,p) is asymptotically almost surely H((1−ε)n,Δ)-universal for p≥c(log⁡n/n)1/Δ. Bypassing this natural boundary, we show that for Δ≥3 the same conclusion holds when p=ω(n−1Δ−1log5⁡n).

Locations

  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • Electronic Notes in Discrete Mathematics - View

Similar Works

Action Title Year Authors
+ Almost-spanning universality in random graphs 2015 David Conlon
Asaf Ferber
Rajko Nenadov
Nemanja Škorić
+ Almost-spanning universality in random graphs 2015 David Conlon
Asaf Ferber
Rajko Nenadov
Nemanja Škorić
+ PDF Chat Spanning universality in random graphs 2018 Asaf Ferber
Rajko Nenadov
+ Spanning universality in random graphs 2017 Asaf Ferber
Rajko Nenadov
+ Spanning universality in random graphs 2017 Asaf Ferber
Rajko Nenadov
+ Almost spanning universality in random graphs 2019 Olaf Parczyk
+ PDF Chat Almost‐spanning universality in random graphs 2016 David Conlon
Asaf Ferber
Rajko Nenadov
Nemanja Škorić
+ Universality of random graphs 2008 Domingos Dellamonica
Yoshiharu Kohayakawa
Vojtěch Rödl
Andrzej Ruciński
+ PDF Chat Universality of Random Graphs 2012 Domingos Dellamonica
Yoshiharu Kohayakawa
Vojtěch Rödl
Andrzej Ruciński
+ Expanders Are Universal for the Class of All Spanning Trees (Extended Abstract) 2012 Daniel Johannsen
Michael Krivelevich
Wojciech Samotij
+ PDF Chat Universality of Random Graphs for Graphs of Maximum Degree Two 2014 Jeong Han Kim
Sang June Lee
+ Almost universal graphs 2006 Alan Frieze
Michael Krivelevich
+ Universality of random graphs for graphs of maximum degree two 2013 Jeong Han Kim
Sang June Lee
+ Universality of random graphs for graphs of maximum degree two 2013 Jeong Han Kim
Sang June Lee
+ Expanders are universal for the class of all spanning trees 2012 Daniel Johannsen
Michael Krivelevich
Wojciech Samotij
+ Expanders Are Universal for the Class of All Spanning Trees 2011 Daniel Johannsen
Michael Krivelevich
Wojciech Samotij
+ Expanders Are Universal for the Class of All Spanning Trees 2011 Daniel Johannsen
Michael Krivelevich
Wojciech Samotij
+ PDF Chat Expanders Are Universal for the Class of All Spanning Trees 2013 Daniel Johannsen
Michael Krivelevich
Wojciech Samotij
+ Universality of random graphs and rainbow embedding 2013 Asaf Ferber
Rajko Nenadov
Ueli Peter
+ Spanning trees in random graphs 2019 Richard Montgomery

Works That Cite This (0)

Action Title Year Authors