List-coloring embedded graphs without cycles of lengths 4 to 8

Type: Preprint

Publication Date: 2015-08-14

Citations: 16

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 2015 Zdeněk Dvořák
Luke Postle
+ Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 2015 Zdeněk Dvořák
Luke Postle
+ Every planar graph without adjacent cycles of length at most $8$ is $3$-choosable 2018 Runrun Liu
Xiangwen Li
+ Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 2017 Zdeněk Dvořák
Luke Postle
+ Planar graphs without cycles of length 4 or 5 are (11:3)-colorable 2018 Zdeněk Dvořák
Xiaolan Hu
+ Planar graphs without cycles of length 4 or 5 are <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e67" altimg="si9.svg"><mml:mrow><mml:mo>(</mml:mo><mml:mn>11</mml:mn><mml:mo>:</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-colorable 2019 Zdeněk Dvořák
Xiaolan Hu
+ Painting and Correspondence Coloring of Squares of Planar Graphs with no 4-cycles 2018 Ilkyoo Choi
Daniel W. Cranston
Théo Pierron
+ Degeneracy and Colorings of Squares of Planar Graphs without 4-Cycles 2018 Ilkyoo Choi
Daniel W. Cranston
Théo Pierron
+ Degeneracy and Colorings of Squares of Planar Graphs without 4-Cycles 2018 Ilkyoo Choi
Daniel W. Cranston
Théo Pierron
+ Planar graphs without 7-cycles and butterflies are DP-4-colorable 2019 Seog‐Jin Kim
Runrun Liu
Gexin Yu
+ PDF Chat Degeneracy and Colorings of Squares of Planar Graphs without 4-Cycles 2020 Ilkyoo Choi
Daniel W. Cranston
Théo Pierron
+ DP-3-coloring of planar graphs without $4,9$-cycles and two cycles from $\{5,6,7,8\}$ 2018 Runrun Liu
Sarah Loeb
Martin Rolek
Yuxue Yin
Gexin Yu
+ Hyperbolicity Theorems for Correspondence Colouring 2023 Luke Postle
Evelyne Smith‐Roberge
+ DP-4-colorability of two classes of planar graphs 2018 Lily Chen
Runrun Liu
Gexin Yu
Ren Zhao
Xiangqian Zhou
+ 3-choosable planar graphs with some precolored vertices and no $5^{-}$-cycles normally adjacent to $8^{-}$-cycles 2019 Fangyao Lu
Qianqian Wang
Tao Wang
+ List Edge Coloring of Planar Graphs Without Non-Induced 6-Cycles 2014 Jiansheng Cai
+ Planar graphs without cycles of length 4 or 5 are<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si9.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math>-colorable 2013 Owen Hill
Diana Smith
Yingqian Wang
Lingji Xu
Gexin Yu
+ PDF Chat Acyclic 4-choosability of planar graphs without 4-cycles 2019 Yingcai Sun
Min Chen
+ List-coloring the Square of a Subcubic Graph 2015 Daniel W. Cranston
Seog‐Jin Kim
+ Degree-Limited Defective Three Colorings of Planar Graphs Containing No 4-Cycles or 5-Cycles 2016 Addie Armstrong