The Schwartzian Derivative and the Conformal Geometry of the Lorentz Hyperboloid

Type: Book-Chapter

Publication Date: 1988-01-01

Citations: 12

DOI: https://doi.org/10.1007/978-94-009-3055-1_7

Locations

  • Springer eBooks - View

Similar Works

Action Title Year Authors
+ The Schwarzian derivative and conformal mapping of Riemannian manifolds 1992 Brad Osgood
Dennis Stowe
+ PDF Chat The Schwarzian derivative and the Poincaré metric 1979 Jacob Burbea
+ PDF Chat Lorentzian worldlines and the Schwarzian derivative 2000 Christian Duval
Valentin Ovsienko
+ The Schwarzian derivative, conformal connections, and Möbius structures 1998 Brad Osgood
Dennis Stowe
+ Conformally flat and Einsteinian Lorentzian hypersurfaces 1987 Ignace Van de Woestyne
Pol Verstraelen
+ The Schwarzian derivative for conformal maps. 1990 Keith Carne
+ PDF Chat Lorentzian Conformal Geometry and Dynamics 2002 Charles Frances
+ The Schwarzian derivative and conformally natural quasiconformal extensions from one to two to three dimensions 1992 Martin Chuaqui
Brad Osgood
+ Лоренцева геометрия на плоскости Лобачевского 2023 Yurii Leonidovich Sachkov
+ Lorentzian Geometry on the Lobachevsky Plane 2023 Yu. L. Sachkov
+ Semi-symmetric Lorentzian hypersurfaces in Lorentzian space forms 2013 Norah Alshehri
Mohammed Guediri
+ PDF Chat Formalism for Conformal Geometry 1935 Oswald Veblen
+ Schwarzian derivatives, the Poincaré metric and the kernel function 1980 Alan F. Beardon
F. W. Gehring
+ Conformal geometry and Einstein's equation 1988 I. R. Miklashevskii
+ The Schwarzian Derivative 2021 Robert L. Devaney
+ The Schwarzian derivative 1989 E. Atlee Jackson
+ The Conformal Laplacian on Spheres and Hyperbolas via Clifford Analysis 2001 Hong Liu
John Ryan
+ Spherical geometry and the Schwarzian differential equation 1985 John A. Velling
+ PDF Chat Lorentzian isoparametric hypersurfaces in the Lorentzian sphere $\boldsymbol{S_1^{n+1}}$ 2018 Zhenqi Li
+ Conformal Geometry, Euclidean Space and Geometric Algebra 2002 Chris Doran
A. Lasenby
Joan Lasenby