The Dirichlet Problem for Second-Order Divergence Form Elliptic Operators with Variable Coefficients: The Simple Layer Potential Ansatz

Type: Article

Publication Date: 2015-01-01

Citations: 7

DOI: https://doi.org/10.1155/2015/276810

Abstract

We investigate the Dirichlet problem related to linear elliptic second-order partial differential operators with smooth coefficients in divergence form in bounded connected domains of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>(<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:math>) with Lyapunov boundary. In particular, we show how to represent the solution in terms of a simple layer potential. We use an indirect boundary integral method hinging on the theory of reducible operators and the theory of differential forms.

Locations

  • Project Euclid (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • CINECA IRIS Institutional Research Information System (University of Basilicata) - View - PDF
  • Abstract and Applied Analysis - View - PDF

Similar Works

Action Title Year Authors
+ The 𝐿^{𝑝} Dirichlet boundary problem for second order elliptic Systems with rough coefficients 2020 Martin Dindoš
Sukjung Hwang
Marius Mitrea
+ The Neumann problem for the equation Δ𝑢-𝑘²𝑢=0 in the exterior of non-closed Lipschitz surfaces 2013 П. А. Крутицкий
+ Elliptic equations in divergence form with drifts in 𝐿² 2021 Hyunwoo Kwon
+ The Double Layer Potential Operator Through Functional Calculus 2012 Michail Krimpogiannis
+ Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators 2014 Steve Hofmann
Carlos E. Kenig
Svitlana Mayboroda
Jill Pipher
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ PDF Chat Layer potentials beyond singular integral operators 2013 Alon Rosen
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ The Dirichlet problem for second-order elliptic equations in non-divergence form with continuous coefficients 2025 Hongjie Dong
Dong-ha Kim
Seick Kim
+ Boundary value problems in Lipschitz domains for equations with lower order coefficients 2019 Georgios Sakellaris
+ Layer potentials beyond singular integral operators 2012 Andreas Rosén
+ Layer potentials beyond singular integral operators 2012 Andreas Rosén
+ PDF Chat On uniqueness results for Dirichlet problems of elliptic systems without de Giorgi–Nash–Moser regularity 2020 Pascal Auscher
Moritz Egert
+ PDF Chat Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2016 Alejandro J. Castro
Kaj Nyström
Olow Sande
+ Schauder-type estimates of solutions of second order elliptic systems in divergence form, in non-regular dohtains<sup>∗</sup> 1991 A. Azzam
В А Кондратьев
+ PDF Chat On an elliptic boundary value problem not in divergence form 1983 Nguyên Phuong Các
+ Dirichlet problem for a divergence form elliptic equation with unbounded coefficients in an unbounded domain 2000 Maurizio Chicco
Marina Venturino
+ Layer potentials in boundary value problems and aerodynamics 2017 Luis Martínez Zoroa
+ THE LAYER POTENTIALS OF SOME PARTIAL DIFFERENTIAL OPERATORS: REAL ANALYTIC DEPENDENCE UPON PERTURBATIONS 2009 Matteo Dalla Riva
+ The adjoint double layer potential on smooth surfaces in $$\mathbb {R}^3$$ and the Neumann problem 2024 J. Thomas Beale
Michael Storm
Svetlana Tlupova