Type: Article
Publication Date: 2015-01-01
Citations: 7
DOI: https://doi.org/10.1155/2015/276810
We investigate the Dirichlet problem related to linear elliptic second-order partial differential operators with smooth coefficients in divergence form in bounded connected domains of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>(<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">3</mml:mn></mml:math>) with Lyapunov boundary. In particular, we show how to represent the solution in terms of a simple layer potential. We use an indirect boundary integral method hinging on the theory of reducible operators and the theory of differential forms.