How much data is needed to train a medical image deep learning system to achieve necessary high accuracy?

Type: Preprint

Publication Date: 2015-01-01

Citations: 250

DOI: https://doi.org/10.48550/arxiv.1511.06348

View

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Development of CNN Architectures using Transfer Learning Methods for Medical Image Classification 2024 Ganga Prasad Basyal
David Zeng
Bhaskar Prasad Rimal
+ A Systematic Collection of Medical Image Datasets for Deep Learning 2021 Johann Li
Guangming Zhu
Cong Hua
Mingtao Feng
Basheer Bennamoun
Ping Li
Xiaoyuan Lu
Juan Song
Peiyi Shen
Xu Xu
+ PDF Chat A Systematic Collection of Medical Image Datasets for Deep Learning 2023 Johann Li
Guangming Zhu
Cong Hua
Mingtao Feng
Basheer Bennamoun
Ping Li
Xiaoyuan Lu
Juan Song
Peiyi Shen
Xu Xu
+ PDF Chat Anatomy-specific classification of medical images using deep convolutional nets 2015 Holger R. Roth
Christopher T. Lee
Hoo-Chang Shin
Ari Seff
Lauren Kim
Jianhua Yao
Le Lü
Ronald M. Summers
+ PDF Chat Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks 2022 Sivaramakrishnan Rajaraman
Prasanth Ganesan
Sameer Antani
+ PDF Chat A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises 2021 S. Kevin Zhou
Hayit Greenspan
Christos Davatzikos
James S. Duncan
Bram van Ginneken
Anant Madabhushi
Jerry L. Prince
Daniel Rueckert
Ronald M. Summers
+ Nervus: A Comprehensive Deep Learning Classification, Regression, and Prognostication Tool for both Medical Image and Clinical Data Analysis 2022 Toshimasa Matsumoto
Shannon L. Walston
Yukio Miki
Daiju Ueda
+ Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods 2021 Zohaib Salahuddin
Henry C. Woodruff
Avishek Chatterjee
Philippe Lambin
+ PDF Chat Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? 2016 Nima Tajbakhsh
Jae Y. Shin
Suryakanth R. Gurudu
R. Todd Hurst
Christopher B. Kendall
Michael B. Gotway
Jianming Liang
+ Transparency of deep neural networks for medical image analysis: A review of interpretability methods 2021 Zohaib Salahuddin
Henry C. Woodruff
Avishek Chatterjee
Philippe Lambin
+ PDF Chat Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions 2024 Aimina Ali Eli
Abida Ali
+ PDF Chat Deep Learning in Medical Image Analysis 2021 Yudong Zhang
J. M. Górriz
Zhengchao Dong
+ PDF Chat Carbon Footprint of Selecting and Training Deep Learning Models for Medical Image Analysis 2022 Raghavendra Selvan
Nikhil Bhagwat
Lasse F. Wolff Anthony
Benjamin Kanding
Erik B. Dam
+ Are Deep Learning Classification Results Obtained on CT Scans Fair and Interpretable? 2023 Mohamad M. A. Ashames
Ahmet Demir
Ömer Nezih Gerek
Mehmet Fidan
M. Bilginer Gülmezoğlu
Semih Ergi̇n
Mehmet Koç
Atalay Barkana
Cüneyt Çalışır
+ Understanding Calibration of Deep Neural Networks for Medical Image Classification 2023 Abhishek Singh Sambyal
Usma Niyaz
Narayanan C. Krishnan
Deepti R. Bathula
+ PDF Chat Did You Get What You Paid For? Rethinking Annotation Cost of Deep Learning Based Computer Aided Detection in Chest Radiographs 2022 Tae Soo Kim
Geonwoon Jang
Sang Hyup Lee
Thijs Kooi
+ Medical Image Deep Learning with Hospital PACS Dataset. 2015 Junghwan Cho
Kyewook Lee
Ellie Shin
Garry Choy
Synho Do
+ An overview of deep learning in medical imaging 2022 Imran Ul Haq
+ PDF Chat Evaluation of Complexity Measures for Deep Learning Generalization in Medical Image Analysis 2021 Aleksandar Vakanski
Min Xian
+ Applications of Sequential Learning for Medical Image Classification 2023 Sohaib Naim
Brian Caffo
Haris I. Sair
Craig Jones

Cited by (52)

Action Title Year Authors
+ PDF Chat Impact of Training Dataset Size on Neural Answer Selection Models 2019 Trond Linjordet
Krisztian Balog
+ PDF Chat A scoping review of transfer learning research on medical image analysis using ImageNet 2020 Mohammad Amin Morid
Alireza Borjali
Guilherme Del Fiol
+ PDF Chat Understanding the Mechanisms of Deep Transfer Learning for Medical Images 2016 Hariharan Ravishankar
Prasad Sudhakar
Rahul Venkataramani
Sheshadri Thiruvenkadam
Pavan Annangi
Narayanan Babu
Vivek Vaidya
+ PDF Chat Ten quick tips for deep learning in biology 2022 Benjamin D. Lee
Anthony Gitter
Casey S. Greene
Sebastian Raschka
Finlay Maguire
Alexander J. Titus
Michael D. Kessler
Alexandra Lee
Marc G. Chevrette
Paul A. Stewart
+ Understanding the Mechanisms of Deep Transfer Learning for Medical Images 2017 Hariharan Ravishankar
Prasad Sudhakar
Rahul Venkataramani
Sheshadri Thiruvenkadam
Pavan Annangi
Narayanan Babu
Vivek Vaidya
+ Scaling Laws for Deep Learning 2021 Jonathan S. Rosenfeld
+ Meta-learning Amidst Heterogeneity and Ambiguity 2021 Kyeongryeol Go
Se-Young Yun
+ PDF Chat Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state‐of‐art applications 2020 Hyunseok Seo
Masoud Badiei Khuzani
Varun Vasudevan
Charles Huang
Hongyi Ren
Ruoxiu Xiao
Xiao Jia
Lei Xing
+ Slice Tuner: A Selective Data Acquisition Framework for Accurate and Fair Machine Learning Models 2020 Ki Hyun Tae
Steven Euijong Whang
+ PDF Chat Learning to detect chest radiographs containing pulmonary lesions using visual attention networks 2019 Emanuele Pesce
Samuel Withey
Petros-Pavlos Ypsilantis
Robert Bakewell
Vicky Goh
Giovanni Montana
+ Challenges for machine learning in clinical translation of big data imaging studies 2022 Nicola K. Dinsdale
Emma Bluemke
Vaanathi Sundaresan
Mark Jenkinson
Stephen M. Smith
Ana I. L. Namburete
+ Lirot.ai: A Novel Platform for Crowd-Sourcing Retinal Image Segmentations 2022 Jonathan Fhima
Jan Van Eijgen
Moti Freiman
Ingeborg Stalmans
Joachim A. Behar"
+ PDF Chat On the benefits of self-taught learning for brain decoding 2022 Élodie Germani
Élisa Fromont
Camille Maumet
+ “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring 2020 Saleh Shahinfar
Paul D. Meek
Greg Falzon
+ Edge Learning with Unmanned Ground Vehicle: Joint Path, Energy and Sample Size Planning 2020 Dan Liu
Shuai Wang
Zhigang Wen
Lei Cheng
Miaowen Wen
Yik‐Chung Wu
+ PDF Chat Artificial Intelligence and its role in surgical care in low-income and middle-income countries 2019 Ché L. Reddy
Shivani Mitra
John G. Meara
Rifat Atun
Salim Afshar
+ PDF Chat Lostnet: A Smart Way for Lost and Find 2023 Meihua Zhou
Ivan W. H. Fung
Li Yang
Nan Wan
Keke Di
Tingting Wang
+ PDF Chat *-CFQ: Analyzing the Scalability of Machine Learning on a Compositional Task 2021 Dmitry Tsarkov
Tibor Tihon
Nathan Scales
Nikola Momchev
Danila Sinopalnikov
Nathanael Schärli
+ PDF Chat Edge Learning With Unmanned Ground Vehicle: Joint Path, Energy, and Sample Size Planning 2020 Dan Liu
Shuai Wang
Zhigang Wen
Lei Cheng
Miaowen Wen
Yik‐Chung Wu
+ PDF Chat Do DL models and training environments have an impact on energy consumption? 2023 Santiago del Rey
Silverio Martínez‐Fernández
Luís Cruz
Xavier Franch
+ Lesion Conditional Image Generation for Improved Segmentation of Intracranial Hemorrhage from CT Images 2020 Manohar Karki
Junghwan Cho
+ Deep Learning in Bioinformatics 2016 Seonwoo Min
Byunghan Lee
Sungroh Yoon
+ PDF Chat Social and Governance Implications of Improved Data Efficiency 2020 Aaron D. Tucker
Markus Anderljung
Allan Dafoe
+ PDF Chat A Combined Full-Reference Image Quality Assessment Method Based on Convolutional Activation Maps 2020 Domonkos Varga
+ Improving brain computer interface performance by data augmentation with conditional Deep Convolutional Generative Adversarial Networks 2018 Qiqi Zhang
Ying Liu
+ PDF Chat MF-Net: Compute-In-Memory SRAM for Multibit Precision Inference Using Memory-Immersed Data Conversion and Multiplication-Free Operators 2021 Shamma Nasrin
Diaa Badawi
A. Enis Çetin
Wilfred Gomes
Amit Ranjan Trivedi
+ PDF Chat Hardware-accelerated SAR simulation with NVIDIA-RTX technology 2020 Andrew Willis
Md Sajjad Hossain
Jamie L. Godwin
+ A Multisite, Report-Based, Centralized Infrastructure for Feedback and Monitoring of Radiology AI/ML Development and Clinical Deployment 2020 Menashe Benjamin
Guy Engelhard
Alex M. Aisen
Yinon Aradi
Elad Benjamin
+ How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring 2020 Saleh Shahinfar
Paul D. Meek
Greg Falzon
+ A Constructive Prediction of the Generalization Error Across Scales 2019 Jonathan S. Rosenfeld
Amir Rosenfeld
Yonatan Belinkov
Nir Shavit
+ Screening COVID-19 Based on CT/CXR Images & Building a Publicly Available CT-scan Dataset of COVID-19 2020 Maryam Dialameh
Ali Hamzeh
Hossein Rahmani
Amir Reza Radmard
Safoura Dialameh
+ Diffusion Probabilistic Models beat GANs on Medical Images 2022 Gustav Müller‐Franzes
J. Niehues
Firas Khader
Soroosh Tayebi Arasteh
Christoph Haarburger
Christiane Kühl
Tianci Wang
Tianyu Han
Sven Nebelung
Jakob Nikolas Kather
+ tax2vec: Constructing Interpretable Features from Taxonomies for Short Text Classification 2020 Blaž Škrlj
Matej Martinc
Jan Kralj
Nada Lavrač
Senja Pollak
+ Minimum Cost Active Labeling. 2020 Hang Qiu
Krishna Chintalapudi
Ramesh Govindan
+ Med-BERT: pre-trained contextualized embeddings on large-scale structured electronic health records for disease prediction 2020 Laila Rasmy
Yang Xiang
Ziqian Xie
Cui Tao
Degui Zhi
+ Voxel-level Siamese Representation Learning for Abdominal Multi-Organ Segmentation 2021 Chae Eun Lee
Minyoung Chung
Yeong-Gil Shin
+ LostNet: A smart way for lost and find 2024 Meihua Zhou
Ivan W. H. Fung
Li Yang
Nan Wan
Keke Di
T. Wang
+ SUSAN: Segment Unannotated image Structure using Adversarial Network 2018 Fang Liu
+ Impact of Training Dataset Size on Neural Answer Selection Models 2019 Trond Linjordet
Krisztian Balog
+ Image Deconvolution via Noise-Tolerant Self-Supervised Inversion 2020 Hirofumi Kobayashi
Ahmet Can Solak
Joshua Batson
Loïc A. Royer