On Computing the Number of Latin Rectangles

Type: Article

Publication Date: 2015-11-14

Citations: 3

DOI: https://doi.org/10.1007/s00373-015-1643-1

Abstract

Doyle (circa 1980) found a formula for the number of $$k \times n$$ Latin rectangles $$L_{k,n}$$ . This formula remained dormant until it was recently used for counting $$k \times n$$ Latin rectangles, where $$k \in \{4,5,6\}$$ . We give a formal proof of Doyle’s formula for arbitrary k. We also improve a previous implementation of this formula, which we use to find $$L_{k,n}$$ when $$k=4$$ and $$n \le 150$$ , when $$k=5$$ and $$n \le 40$$ and when $$k=6$$ and $$n \le 15$$ . Motivated by computational data for $$3 \le k \le 6$$ , some research problems and conjectures about the divisors of $$L_{k,n}$$ are presented.

Locations

  • Graphs and Combinatorics - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Many Formulae for the Number of Latin Rectangles 2010 Douglas S. Stones
+ ON THE NUMBER OF LATIN RECTANGLES 1969 幸一 山本
+ The number of Latin rectangles 2007 Peter G. Doyle
+ Counting 3 by n Latin Rectangles 1976 K. P. Bogart
J. Q. Longyear
+ PDF Chat ON THE NUMBER OF LATIN RECTANGLES 2010 Douglas S. Stones
+ On the Number of Latin Rectangles and Chromatic Polynomial of L(Kr,s) 1980 Krishna B. Athreya
C. R. Pranesachar
N.M. Singhi
+ On the polynomial formula for the number of Latin squares 2009 박인웅
+ Latin squares and their defining sets 2005 Karola Mészáros
+ PDF Chat New bounds for Ryser’s conjecture and related problems 2022 Peter Keevash
Alexey Pokrovskiy
Benny Sudakov
Liana Yepremyan
+ On the Threshold Problem for Latin Boxes. 2017 Zur Luria
Michael Simkin
+ Chapter XI. Improved results on the number of Latin rectangles 1986 Charles Stein
Charles Stein
+ On the Threshold Problem for Latin Boxes 2017 Zur Luria
Michael Simkin
+ ON THE INTERSECTIONS OF LATIN SQUARES WITH HOLES 1989 Cm Fu
Hl Fu
+ A new approach to the results of K\"ovari, S\'os, and Tur\'an concerning rectangle-free subsets of the grid 2012 Jeremy F. Alm
Jacob Manske
+ PDF Chat Asymptotic enumeration of Latin rectangles 1990 Chris Godsil
Brendan D. McKay
+ How many latin rectangles are there? 2007 Aurelio de Gennaro
+ PDF Chat Counting Latin rectangles 1987 Ira M. Gessel
+ Wide enough Latin rectangles are perfects 2015 Natacha Astromujoff
Martı́n Matamala
+ On the Number of Maximum Inner Distance Latin Squares 2021 Omar Aceval Garcia
+ Rectangles in latin squares 2019 Ivan I. Deriyenko