Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing

Type: Article

Publication Date: 2012-07-01

Citations: 99

DOI: https://doi.org/10.1109/isit.2012.6283053

Download PDF

Abstract

We study the compressed sensing reconstruction problem for a broad class of random, band-diagonal sensing matrices. This construction is inspired by the idea of spatial coupling in coding theory. As demonstrated heuristically and numerically by Krzakala et al. [11], message passing algorithms can effectively solve the reconstruction problem for spatially coupled measurements with undersampling rates close to the fraction of non-zero coordinates. We use an approximate message passing (AMP) algorithm and analyze it through the state evolution method. We give a rigorous proof that this approach is successful as soon as the undersampling rate δ exceeds the (upper) Rényi information dimension of the signal, d̅(p <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</sub> ). More precisely, for a sequence of signals of diverging dimension n whose empirical distribution converges to p <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</sub> , reconstruction is with high probability successful from d̅(p <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</sub> )n+o(n) measurements taken according to a band diagonal matrix. For sparse signals, i.e. sequences of dimension n and k(n) non-zero entries, this implies reconstruction from k(n) + o(n) measurements. For `discrete' signals, i.e. signals whose coordinates take a fixed finite set of values, this implies reconstruction from o(n) measurements. The result is robust with respect to noise, does not apply uniquely to random signals, but requires the knowledge of the empirical distribution of the signal p <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</sub> .

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing 2013 David L. Donoho
Adel Javanmard
Andrea Montanari
+ Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing 2011 David L. Donoho
Adel Javanmard
Andrea Montanari
+ Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing 2011 David L. Donoho
Adel Javanmard
Andrea Montanari
+ Bayes-Optimal Estimation in Generalized Linear Models via Spatial Coupling 2023 Pablo Pascual Cobo
Kuan Hsieh
Ramji Venkataramanan
+ PDF Chat Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes 2015 Jean Barbier
Christophe Schülke
Florent Krząkała
+ Compressed sensing and Approximate Message Passing with spatially-coupled Fourier and Hadamard matrices. 2013 Jean Barbier
Florent Krząkała
Christophe Schülke
+ State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling 2012 Adel Javanmard
Andrea Montanari
+ State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling 2012 Adel Javanmard
Andrea Montanari
+ The Effect of Spatial Coupling on Compressive Sensing 2010 Shrinivas Kudekar
Henry D. Pfister
+ The Effect of Spatial Coupling on Compressive Sensing 2010 Shrinivas Kudekar
Henry D. Pfister
+ On approximate message passing for reconstruction of non-uniformly sparse signals 2010 Subhojit Som
Lee C. Potter
Philip Schniter
+ PDF Chat Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation 2020 Jean Barbier
Nicolas Macris
Mohamad Dia
Florent Krząkała
+ PDF Chat Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices 2012 Florent Krząkała
Marc Mézard
François Sausset
Yifan Sun
Lenka Zdeborová
+ PDF Chat Bayes-Optimal Estimation in Generalized Linear Models via Spatial Coupling 2023 Pablo Pascual Cobo
Kuan Hsieh
Ramji Venkataramanan
+ PDF Chat Robust error correction for real-valued signals via message-passing decoding and spatial coupling 2013 Jean Barbier
Florent Krząkała
Lenka Zdeborová
Pan Zhang
+ PDF Chat The effect of spatial coupling on compressive sensing 2010 Shrinivas Kudekar
Henry D. Pfister
+ PDF Chat A simple message-passing algorithm for compressed sensing 2010 Venkat Chandar
Devavrat Shah
Gregory W. Wornell
+ Compressed Sensing via Universal Denoising and Approximate Message Passing 2014 Yanting Ma
Junan Zhu
Dror Baron
+ A Hybrid Approach to Coded Compressed Sensing where Coupling Takes Place via the Outer Code 2020 Jamison R. Ebert
Vamsi K. Amalladinne
Jean‐François Chamberland
Krishna R. Narayanan
+ A Hybrid Approach to Coded Compressed Sensing where Coupling Takes Place via the Outer Code 2020 Jamison R. Ebert
Vamsi K. Amalladinne
Jean‐François Chamberland
Krishna R. Narayanan