The Euler characteristic of a category

Type: Article

Publication Date: 2008-01-01

Citations: 118

DOI: https://doi.org/10.4171/dm/240

Abstract

The Euler characteristic of a finite category is defined and shown to be compatible with Euler characteristics of other types of object, including orbifolds. A formula is proved for the cardinality of a colimit of sets, generalizing the classical inclusion-exclusion formula. Both rest on a generalization of Rota's Möbius inversion from posets to categories.

Locations

  • Documenta Mathematica - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The Euler characteristic of a category 2006 Tom Leinster
+ The Euler characteristic of a category 2006 Tom Leinster
+ PDF Chat The Euler characteristic of a category as the sum of a divergent series 2008 Clemens Berger
Tom Leinster
+ Notions of Möbius inversion 2012 Tom Leinster
+ Notions of Möbius inversion 2012 Tom Leinster
+ The Euler characteristic of a category as the sum of a divergent series 2007 Tom Leinster
+ Notions of Möbius inversion 2012 Tom Leinster
+ Notions of M\"obius inversion 2012 Tom Leinster
+ Euler Characteristics of Finite Homotopy Colimits 2018 John D. Berman
+ Euler Characteristics of Finite Homotopy Colimits 2018 John D. Berman
+ Möbius Homology 2023 Amit R. Patel
Primož Škraba
+ The Euler Characteristic of Finite Categories 2023 M. Akkaya
Özgün Ünlü
+ PDF Chat THE EULER CHARACTERISTIC OF ACYCLIC CATEGORIES 2011 Kazunori Noguchi
+ PDF Chat Finiteness obstructions and Euler characteristics of categories 2010 Thomas M. Fiore
Wolfgang Lück
Roman Sauer
+ The Euler Number 2006 Martin D. Crossley
+ Finiteness obstructions and Euler characteristics of categories 2009 Thomas M. Fiore
Wolfgang Lück
Roman Sauer
+ Finiteness obstructions and Euler characteristics of categories 2009 Thomas M. Fiore
Wolfgang Lück
Roman Sauer
+ Euler Systems 2000 Karl Rubin
+ The Euler characteristic of a bicategory and the product formula for fibered bicategories 2014 Kohei Tanaka
+ Euler's Partition Theorem. 2015 Lukas Bulwahn