LEVELS AND SUBLEVELS OF QUATERNION ALGEBRAS

Type: Article

Publication Date: 2010-07-06

Citations: 8

DOI: https://doi.org/10.3318/pria.2010.110.1.95

Abstract

The level s (resp. sublevel s) of a ring R with 1 6= 0 is the smallest positive integer such that −1 (resp. 0) can be written as a sum of s (resp. s+1) nonzero squares in R, provided −1 (resp. 0) is a sum of nonzero squares at all. D.W. Lewis showed that any value of type 2n or 2n +1 can be realized as level of a quaternion division algebra, and in all these examples, the sublevel was 2n, which prompted the question whether or not the level and sublevel of a quaternion division algebra will always differ at most by one. In this note, we give a positive answer to that question.

Locations

  • Mathematical Proceedings of the Royal Irish Academy - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ LEVELS AND SUBLEVELS OF QUATERNION ALGEBRAS 2010 Detlev W. Hoffmann
+ PDF Chat Levels of quaternion algebras 1989 David W. Lewis
+ Levels of quaternion algebras 2008 Detlev W. Hoffmann
+ PDF Chat Levels of rings — a survey 2016 Detlev W. Hoffmann
+ ON THE LEVEL OF A QUATERNION ALGEBRA 2001 Ahmed Laghribi
Pasquale Mammone
+ PDF Chat BOUNDS ON THE LEVELS OF COMPOSITION ALGEBRAS 2010 James O’Shea
+ PDF Chat BOUNDS ON THE LEVELS OF COMPOSITION ALGEBRAS 2010 James O’Shea
+ Levels and sublevels of composition algebras 2007 James O’Shea
+ Division Algebras-Beyond the Quaternions 1998 J. C. McConnell
+ Levels and Sublevels of Composition Algebras 2007 James O’Shea
+ PDF Chat Sets of integers as superdegrees and superclass sizes 2010 Benjamin Allen Otto
+ The level of cyclic division algebras 1990 Marleen Denert
Jean-Pierre Tignol
Jan Van Geel
Nicole Vast
+ PDF Chat Integer-valued polynomials on subsets of quaternion algebras 2024 Nicholas J. Werner
+ The quaternion field of M_n(C) 2000 Liu Tai
+ Split Quaternions and Integer-valued Polynomials 2014 Antonio Cigliola
K. Alan Loper
Nicholas J. Werner
+ Subrings of $\mathbb{C}$ Generated by Angles 2016 Jackson Bahr
Arielle Roth
+ PDF Chat Orthomodularity and the Direct Sum of Division Subrings of the Quaternions 1972 Ronald P. Morash
+ Quaternion algebras and well-rounded lattices 2017 Miika Leinonen
+ Quaternion Algebras 2021 John Voight
+ Superrings and supergroups 2009 Dennis B Westra