Mind the Nuisance: Gaussian Process Classification using Privileged Noise

Type: Article

Publication Date: 2014-12-08

Citations: 12

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Mind the Nuisance: Gaussian Process Classification using Privileged Noise 2014 Daniel Hernández-Lobato
Viktoriia Sharmanska
Kristian Kersting
Christoph H. Lampert
Novi Quadrianto
+ Mind the Nuisance: Gaussian Process Classification using Privileged Noise 2014 Daniel Hernández-Lobato
Viktoriia Sharmanska
Kristian Kersting
Christoph H. Lampert
Novi Quadrianto
+ Gaussian Process Classification with Privileged Information by Soft-to-Hard Labeling Transfer 2018 Ryosuke Kamesawa
Issei Sato
Masashi Sugiyama
+ Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation 2019 Théo Galy-Fajou
Florian Wenzel
Christian Donner
Manfred Opper
+ Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation 2019 Théo Galy-Fajou
Florian Wenzel
Christian Donner
Manfred Opper
+ Gaussian Process Probes (GPP) for Uncertainty-Aware Probing 2023 Zi Wang
Alexander Ku
Jason Baldridge
Thomas L. Griffiths
Been Kim
+ Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods 2019 Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
+ PDF Chat Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning 2021 Chi-Ken Lu
Patrick Shafto
+ Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds 2018 David Reeb
Andreas Doerr
Sebastian Gerwinn
Barbara Rakitsch
+ Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds 2018 David Reeb
Andreas Doerr
Sebastian Gerwinn
Barbara Rakitsch
+ Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds 2018 David Reeb
Andreas Doerr
Sebastian Gerwinn
Barbara Rakitsch
+ Towards Improved Learning in Gaussian Processes: The Best of Two Worlds 2022 Rui Li
St. John
Arno Solin
+ The Promises and Pitfalls of Deep Kernel Learning 2021 Sebastian W. Ober
Carl Edward Rasmussen
Mark van der Wilk
+ Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning. 2021 Chi-Ken Lu
Patrick Shafto
+ Guided Deep Kernel Learning 2023 Idan Achituve
Gal Chechik
Ethan Fetaya
+ The Promises and Pitfalls of Deep Kernel Learning 2021 Sebastian W. Ober
Carl Edward Rasmussen
Mark van der Wilk
+ PDF Chat An Intuitive Tutorial to Gaussian Process Regression 2023 J. Wang
+ An Intuitive Tutorial to Gaussian Processes Regression 2020 J. Wang
+ Multi-class Gaussian Process Classification with Noisy Inputs 2020 Carlos Villacampa-Calvo
Bryan ZaldĂ­var
Eduardo C. Garrido-Merchán
Daniel Hernández-Lobato
+ Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties 2020 Jakob Lindinger
David Reeb
Christoph Lippert
Barbara Rakitsch