Kloosterman sums for Chevalley groups

Type: Article

Publication Date: 1993-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9947-1993-1102221-2

Abstract

A generalization of Kloosterman sums to a simply connected Chevalley group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is discussed. These sums are parameterized by pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis w comma t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>w</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(w,t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="w"> <mml:semantics> <mml:mi>w</mml:mi> <mml:annotation encoding="application/x-tex">w</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an element of the Weyl group of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an element of a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-split torus in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper L left-parenthesis 2 comma bold upper Q right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">SL(2,{\mathbf {Q}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Kloosterman sums coincide with the classical Kloosterman sums and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper L left-parenthesis r comma bold upper Q right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">SL(r,{\mathbf {Q}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Kloosterman sums, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r greater-than-or-equal-to 3"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">r \geq 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, coincide with the sums introduced in [B-F-G,F,S]. Algebraic properties of the sums are proved by root system methods. In particular an explicit decomposition of a general Kloosterman sum over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Q}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into the product of local <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic factors is obtained. Using this factorization one can show that the Kloosterman sums corresponding to a toral element, which acts trivially on the highest weight space of a fundamental irreducible representation, splits into a product of Kloosterman sums for Chevalley groups of lower rank.

Locations

  • Transactions of the American Mathematical Society - View - PDF