The behaviour of eigenstates of arithmetic hyperbolic manifolds

Type: Article

Publication Date: 1994-03-01

Citations: 368

DOI: https://doi.org/10.1007/bf02099418

Abstract

In this paper we study some problems arising from the theory of Quantum Chaos, in the context of arithmetic hyperbolic manifolds. We show that there is no strong localization (“scarring”) onto totally geodesic submanifolds. Arithmetic examples are given, which show that the random wave model for eigenstates does not apply universally in 3 degrees of freedom.

Locations

  • Communications in Mathematical Physics - View
  • Project Euclid (Cornell University) - View - PDF
  • Communications in Mathematical Physics - View
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Large Values of Eigenfunctions on Arithmetic Hyperbolic 3-Manifolds 2011 Djordje Milićević
+ PDF Chat On the Maximal Scarring for Quantum Cat Map Eigenstates 2004 Frédéric Faure
Stéphane Nonnenmacher
+ ARITHMETIC QUANTUM CHAOS ON LOCALLY SYMMETRIC SPACES 2005 Lior Silberman
+ Anatomy of Quantum Chaotic Eigenstates 2013 Stéphane Nonnenmacher
+ PDF Chat Localization properties of groups of eigenstates in chaotic systems 2001 Diego A. Wisniacki
F. Borondo
E. Vergini
R. M. Benito
+ PDF Lipschitz-Killing curvatures for arithmetic random waves 2022 Valentina Cammarota
Domenico Marinucci
Maurizia Rossi
+ On Hyperbolic Flows and the Problem of Chaos in Quantum Systems 1995 Geoffrey L. Sewell
+ L∞-norms of eigenfunctions for arithmetic hyperbolic 3-manifolds 1995 Shin-ya Koyama
+ Random Lipschitz–Killing curvatures: Reduction Principles, Integration by Parts and Wiener chaos 2022 Anna Vidotto
+ Lipschitz-Killing Curvatures for Arithmetic Random Waves 2020 Valentina Cammarota
Domenico Marinucci
Maurizia Rossi
+ Lipschitz-Killing Curvatures for Arithmetic Random Waves 2020 Valentina Cammarota
Domenico Marinucci
Maurizia Rossi
+ Unwrapping eigenfunctions to discover the geometry of almost-invariant sets in hyperbolic maps 2007 Gary Froyland
+ Large values of eigenfunctions on arithmetic hyperbolic surfaces 2010 Djordje Milićević
+ Random Lipschitz-Killing curvatures: reduction principles, integration by parts and Wiener chaos 2021 Anna Vidotto
+ Non-Universal Moderate Deviation Principle for the Nodal Length of Arithmetic Random Waves 2022 Claudio Macci
Maurizia Rossi
Anna Vidotto
+ Maximum norms of chaotic quantum eigenstates and random waves 1999 R. Aurich
Arnd Bäcker
Roman Schubert
M. Taglieber
+ Quantum ergodicity for pseudo-Laplacians 2019 Elie Studnia
+ Quantum ergodicity for pseudo-Laplacians 2019 Elie Studnia
+ Sup-norm problem of certain eigenfunctions on arithmetic hyperbolic manifolds 2015 Subhajit Jana
+ Chaos in non-Euclidean geometries arising in mechanics 2015 Tapobrata Bhattacharya