Partial 3‐D Correspondence from Shape Extremities

Type: Article

Publication Date: 2014-01-24

Citations: 24

DOI: https://doi.org/10.1111/cgf.12278

Abstract

Abstract We present a 3‐D correspondence method to match the geometric extremities of two shapes which are partially isometric. We consider the most general setting of the isometric partial shape correspondence problem, in which shapes to be matched may have multiple common parts at arbitrary scales as well as parts that are not similar. Our rank‐and‐vote‐and‐combine algorithm identifies and ranks potentially correct matches by exploring the space of all possible partial maps between coarsely sampled extremities. The qualified top‐ranked matchings are then subjected to a more detailed analysis at a denser resolution and assigned with confidence values that accumulate into a vote matrix. A minimum weight perfect matching algorithm is finally iterated to combine the accumulated votes into an optimal (partial) mapping between shape extremities, which can further be extended to a denser map. We test the performance of our method on several data sets and benchmarks in comparison with state of the art.

Locations

  • Computer Graphics Forum - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Beyond Complete Shapes: A Quantitative Evaluation of 3D Shape Matching Algorithms 2024 Viktoria Ehm
Nafie El Amrani
Yizheng Xie
Lennart Bastian
Maolin Gao
Weikang Wang
Lu Sang
Dongliang Cao
Zorah Lähner
Daniel Cremers
+ MapTree: Recovering Multiple Solutions in the Space of Maps 2020 Jing Ren
Simone Melzi
Maks Ovsjanikov
Peter Wonka
+ PDF Chat Geometrically Consistent Partial Shape Matching 2024 Viktoria Ehm
Paul Roetzer
Marvin Eisenberger
Maolin Gao
Florian Bernard
Daniel Cremers
+ PDF Chat Partial-to-Partial Shape Matching with Geometric Consistency 2024 Viktoria Ehm
Maolin Gao
Paul Roetzer
Marvin Eisenberger
Daniel Cremers
Florian Bernard
+ Geometrically Consistent Partial Shape Matching 2023 Viktoria Ehm
Paul Roetzer
Marvin Eisenberger
Maolin Gao
Florian Bernard
Daniel Cremers
+ Robust Structure-based Shape Correspondence 2017 Yanir Kleiman
Maks Ovsjanikov
+ Robust Structure-based Shape Correspondence 2017 Yanir Kleiman
Maks Ovsjanikov
+ PDF Chat Robust Structure‐Based Shape Correspondence 2018 Yanir Kleiman
Maks Ovsjanikov
+ Efficient Deformable Shape Correspondence via Kernel Matching 2017 Zorah Lähner
Matthias Vestner
Amit Boyarski
Or Litany
Ron Slossberg
Tal Remez
Emanuele Rodolà
Alex Bronstein
Michael M. Bronstein
Ron Kimmel
+ Efficient Deformable Shape Correspondence via Kernel Matching 2017 Zorah Lähner
Matthias Vestner
Amit Boyarski
Or Litany
Ron Slossberg
Tal Remez
Emanuele Rodolà
Alex Bronstein
Michael M. Bronstein
Ron Kimmel
+ PDF Chat A Dual Iterative Refinement Method for Non-rigid Shape Matching 2021 Rui Xiang
Rongjie Lai
Hongkai Zhao
+ A Dual Iterative Refinement Method for Non-rigid Shape Matching 2020 Rui Xiang
Rongjie Lai
Hongkai Zhao
+ Unsupervised Learning of Robust Spectral Shape Matching 2023 Dongliang Cao
Paul Roetzer
Florian Bernard
+ PDF Chat Robust Shape Collection Matching and Correspondence from Shape Differences 2020 Aharon Cohen
Mirela Ben‐Chen
+ PDF Chat Revisiting Map Relations for Unsupervised Non-Rigid Shape Matching 2024 Dongliang Cao
Paul Roetzer
Florian Bernard
+ Revisiting Map Relations for Unsupervised Non-Rigid Shape Matching 2023 Dongliang Cao
Paul Roetzer
Florian Bernard
+ PDF Chat 3D Geometric Shape Assembly via Efficient Point Cloud Matching 2024 Nahyuk Lee
Juhong Min
Jun-Ha Lee
Seungwook Kim
Kanghee Lee
Jaesik Park
Minsu Cho
+ PDF Chat Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation 2024 Dongliang Cao
Marvin Eisenberger
Nafie El Amrani
Daniel Cremers
Florian Bernard
+ PDF Chat Deformation-driven shape correspondence via shape recognition 2017 Chenyang Zhu
Renjiao Yi
Wallace Lira
Ibraheem Alhashim
Kai Xu
Hao Zhang
+ Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment 2015 Silvia Biasotti
Andrea Cerri
Alex Bronstein
Michael M. Bronstein