Estimates for the maximal singular integral in terms of the singular integral: the case of even kernels

Type: Article

Publication Date: 2011-10-14

Citations: 17

DOI: https://doi.org/10.4007/annals.2011.174.3.2

Abstract

Let T be a smooth homogeneous Calderón-Zygmund singular integral operator in R n .In this paper we study the problem of controlling the maximal singular integral T f by the singular integral T f .The most basic form of control one may consider is the estimate of the L 2 (R n ) norm of T f by a constant times the L 2 (R n ) norm of T f .We show that if T is an even higher order Riesz transform, then one has the stronger pointwise inequality, where C is a constant and M is the Hardy-Littlewood maximal operator.We prove that the L 2 estimate of T by T is equivalent, for even smooth homogeneous Calderón-Zygmund operators, to the pointwise inequality between T and M (T ).Our main result characterizes the L 2 and pointwise inequalities in terms of an algebraic condition expressed in terms of the kernel Ω(x) |x| n of T , where Ω is an even homogeneous function of degree 0, of class C ∞ (S n-1 ) and with zero integral on the unit sphere S n-1 .Let Ω = Pj be the expansion of Ω in spherical harmonics Pj of degree j.Let A stand for the algebra generated by the identity and the smooth homogeneous Calderón-Zygmund operators.Then our characterizing condition states that T is of the form R • U , where U is an invertible operator in A and R is a higher order Riesz transform associated with a homogeneous harmonic polynomial P which divides each Pj in the ring of polynomials in n variables with real coefficients.

Locations

  • arXiv (Cornell University) - View - PDF
  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Estimates for the maximal singular integral in terms of the singular integral:the case of even kernels 2007 Joan Mateu
Joan Orobitg
Joan Verdera
+ Estimates for the maximal singular integral in terms of the singular integral:the case of even kernels 2007 Joan Mateu
Joan Orobitg
Joan Verdera
+ New estimates for the maximal singular integral 2009 Joan Mateu
Joan Orobitg
Carlos Pérez
Joan Verdera
+ New estimates for the maximal singular integral 2009 Joan Mateu
Joan Orobitg
Carlos Perez
Joan Verdera
+ The maximal singular integral : estimates in terms of the singular integral 2012 Joan Verdera
+ PDF Chat New Estimates for the Maximal Singular Integral 2010 J. Mateu
Joan Orobitg
Carlos Pérez
Joan Verdera
+ PDF Chat The Maximal Singular Integral: Estimates in Terms of the Singular Integral 2012 Joan Verdera
+ $L^p$ estimates for the maximal singular integral in terms of the singular integral 2013 Anna Bosch-Camós
Joan Mateu
Joan Orobitg
+ $L^p$ estimates for the maximal singular integral in terms of the singular integral 2013 Anna Bosch-Camós
Joan Mateu
Joan Orobitg
+ Controlant la integral singular maximal 2015 Anna Bosch Camós
+ Sparse bounds for maximal rough singular integrals via the Fourier transform 2017 Francesco Di Plinio
Tuomas Hytönen
Kangwei Li
+ On the maximal singular integral with Riesz potentials 2023 Qingze Lin
Huayou Xie
+ PDF Chat A note on weighted bounds for rough singular integrals 2017 Andrei K. Lerner
+ Quantitative weighted estimates for rough homogeneous singular integrals 2015 Tuomas Hytönen
L. Roncal
Olli Tapiola
+ Quantitative weighted estimates for rough homogeneous singular integrals 2015 Tuomas Hytönen
Luz Roncal
Olli Tapiola
+ PDF Chat Quantitative weighted estimates for rough homogeneous singular integrals 2017 Tuomas Hytönen
Luz Roncal
Olli Tapiola
+ PDF Chat Estimates for singular integral operators in terms of maximal functions 1972 A. Calderón
+ PDF Chat Norm inequalities relating singular integrals and the maximal function 1983 Eric T. Sawyer
+ The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>L</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="normal">log</mml:mi><mml:mo>⁡</mml:mo><mml:mi>L</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>ϵ</mml:mi></mml:mrow></mml:msup></mml:math> endpoint estimate for maximal singular integral operators 2015 Tuomas Hytönen
Carlos Pérez
+ A note on weighted bounds for rough singular integrals 2017 Andrei K. Lerner