On the Fundamental Limits of Adaptive Sensing

Type: Article

Publication Date: 2012-08-28

Citations: 129

DOI: https://doi.org/10.1109/tit.2012.2215837

Abstract

Suppose we can sequentially acquire arbitrary linear measurements of an <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -dimensional vector <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</b> resulting in the linear model <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y</b> = <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A x</b> + <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</b> , where <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</b> represents measurement noise. If the signal is known to be sparse, one would expect the following folk theorem to be true: choosing an adaptive strategy which cleverly selects the next row of <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</b> based on what has been previously observed should do far better than a nonadaptive strategy which sets the rows of <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</b> ahead of time, thus not trying to learn anything about the signal in between observations. This paper shows that the folk theorem is false. We prove that the advantages offered by clever adaptive strategies and sophisticated estimation procedures-no matter how intractable-over classical compressed acquisition/recovery schemes are, in general, minimal.

Locations

  • IEEE Transactions on Information Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the Fundamental Limits of Adaptive Sensing 2011 Ery Arias-Castro
Emmanuel J. Candès
Mark A. Davenport
+ On the Fundamental Limits of Adaptive Sensing 2011 Ery Arias-Castro
Emmanuel J. Candès
Mark Davenport
+ PDF Chat Adaptivity provably helps: Information-theoretic limits on l&lt;inf&gt;0&lt;/inf&gt; cost of non-adaptive sensing 2016 Sanghamitra Dutta
Pulkit Grover
+ Adaptive sensing performance lower bounds for sparse estimation and testing 2012 Rui Castro
+ Adaptive sensing performance lower bounds for sparse signal detection and support estimation 2014 Rui Castro
+ Constrained Adaptive Sensing 2016 Mark A. Davenport
Andrew K. Massimino
Deanna Needell
Tina Woolf
+ PDF Chat Information Theoretic Limits for Phase Retrieval With Subsampled Haar Sensing Matrices 2020 Rishabh Dudeja
Junjie Ma
Arian Maleki
+ PDF Chat Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices 2010 Wei Wang
Martin J. Wainwright
Kannan Ramchandran
+ Adaptivity provably helps: information-theoretic limits on $l_0$ cost of non-adaptive sensing 2016 Sanghamitra Dutta
Pulkit Grover
+ Adaptivity provably helps: information-theoretic limits on $l_0$ cost of non-adaptive sensing 2016 Sanghamitra Dutta
Pulkit Grover
+ PDF Chat Sparse signal processing with linear and non-linear observations: A unified shannon theoretic approach 2013 Cem Aksoylar
George K. Atia
Venkatesh Saligrama
+ PDF Chat On the Fundamental Limits of Recovering Tree Sparse Vectors From Noisy Linear Measurements 2013 Akshay Soni
Jarvis Haupt
+ On the Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measurements 2013 Akshay Soni
Jarvis Haupt
+ On the Fundamental Limits of Recovering Tree Sparse Vectors from Noisy Linear Measurements 2013 Akshay Soni
Jarvis Haupt
+ PDF Chat Lossless linear analog compression 2016 Giovanni Alberti
Helmut Bölcskei
Camillo De Lellis
Günther Koliander
Erwin Riegler
+ Adaptive Sensing for Estimation of Structured Sparse Signals 2013 Ervin Tánczos
Rui Castro
+ Adaptive Sensing for Estimation of Structured Sparse Signals 2013 Ervin Tánczos
Rui Castro
+ PDF Chat On the scaling law for compressive sensing and its applications 2011 Weiyu Xu
Ao Tang
+ PDF Chat A General Compressive Sensing Construct Using Density Evolution 2022 Hang Zhang
Afshin Abdi
Faramarz Fekri
+ PDF Chat Statistical mechanical analysis of a typical reconstruction limit of compressed sensing 2010 Yoshiyuki Kabashima
Tadashi Wadayama
Toshiyuki Tanaka

Works That Cite This (70)

Action Title Year Authors
+ An Introductory Guide to Fano's Inequality with Applications in Statistical Estimation. 2019 Jonathan Scarlett
Volkan Cevher
+ Task-Optimal Exploration in Linear Dynamical Systems 2021 Andrew Wagenmaker
Max Simchowitz
Kevin Jamieson
+ PDF Chat Information-Theoretic Lower Bounds for Compressive Sensing With Generative Models 2020 Zhaoqiang Liu
Jonathan Scarlett
+ The Simulator: Understanding Adaptive Sampling in the Moderate-Confidence Regime 2017 Max Simchowitz
Kevin Jamieson
Benjamin Recht
+ PDF Chat The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic Range 2012 Mark A. Davenport
Jason N. Laska
J Treichler
Richard G. Baraniuk
+ Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling 2018 Shanshan Wu
Alexandros G. Dimakis
Sujay Sanghavi
Felix X. Yu
Daniel Holtmann-Rice
Dmitry Storcheus
Afshin Rostamizadeh
Sanjiv Kumar
+ Information-Theoretic Lower Bounds for Compressive Sensing with Generative Models 2019 Zhaoqiang Liu
Jonathan Scarlett
+ PDF Chat Sequential adaptive design for jump regression estimation 2021 Chiwoo Park
Peihua Qiu
Jennifer Carpena‐Núñez
Rahul Rao
Michael A. Susner
Benji Maruyama
+ Local Privacy, Data Processing Inequalities, and Statistical Minimax Rates 2013 John C. Duchi
Michael I. Jordan
Martin J. Wainwright
+ PDF Chat Minimax Optimal Procedures for Locally Private Estimation 2017 John C. Duchi
Michael I. Jordan
Martin J. Wainwright