Type: Article
Publication Date: 2012-08-28
Citations: 129
DOI: https://doi.org/10.1109/tit.2012.2215837
Suppose we can sequentially acquire arbitrary linear measurements of an <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> -dimensional vector <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</b> resulting in the linear model <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">y</b> = <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A x</b> + <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</b> , where <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">z</b> represents measurement noise. If the signal is known to be sparse, one would expect the following folk theorem to be true: choosing an adaptive strategy which cleverly selects the next row of <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</b> based on what has been previously observed should do far better than a nonadaptive strategy which sets the rows of <b xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</b> ahead of time, thus not trying to learn anything about the signal in between observations. This paper shows that the folk theorem is false. We prove that the advantages offered by clever adaptive strategies and sophisticated estimation procedures-no matter how intractable-over classical compressed acquisition/recovery schemes are, in general, minimal.