Subexponential distribution functions

Type: Article

Publication Date: 1980-05-01

Citations: 168

DOI: https://doi.org/10.1017/s1446788700021340

Abstract

Abstract A distribution function ( F on [0,∞) belongs to the subexponential class if and only if 1− F (2) ( x ) ~ 2(1− F(x) ), as x → ∞. For an important class of distribution functions, a simple, necessary and sufficient condition for membership of is given. A comparison theorem for membership of and also some closure properties of are obtained. 1980 Mathematics subject classification (Amer. Math. Soe.) : primary 60 E 05; secondary 60 J 80.

Locations

  • Journal of the Australian Mathematical Society Series A Pure Mathematics and Statistics - View - PDF

Similar Works

Action Title Year Authors
+ Some new results on the subexponential class 1989 Emily S. Murphree
+ Some new results on the subexponential class 1989 Emily S. Murphree
+ Subexponential distribution functions and some applications 1979 Paul Embrechts
Charles M. Goldie
Noël Veraverbeke
+ Subexponential distribution functions and some applications 1979 Paul Embrechts
Charles M. Goldie
Noël Veraverbeke
+ Subexponential distribution functions and their applications: A review 1985 Paul Embrechts
+ PDF Chat Second order subexponential distributions 1991 Jaap Geluk
Anthony G. Pakes
+ Subexponential Distributions 2013 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ PDF Chat On closure and factorization properties of subexponential and related distributions 1980 Paul Embrechts
Charles M. Goldie
+ The Subexponential Class of Probability Distributions 1975 J. L. Teugels
+ Some properties of subexponential distributions 1997 A. L. Yakymiv
+ Subexponential Distributions 2011 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ PDF Chat Convolutions of Distributions With Exponential and Subexponential Tails 1987 Daren B. H. Cline
+ On the non-closure under convolution of the subexponential family 1989 J. R. Leslie
+ On the non-closure under convolution of the subexponential family 1989 J. R. Leslie
+ Subexponential Distributions 2004 Eric Willekens
+ On the Constant in the Definition of Subexponential Distributions 2000 B. A. Rogozin
+ PDF Chat An Introduction to Heavy-Tailed and Subexponential Distributions 2013 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ An Introduction to Heavy-Tailed and Subexponential Distributions 2011 Sergey Foss
Dmitry Korshunov
Stan Zachary
+ Some closure properties for subexponential distributions 2009 Jaap Geluk
+ Second order subexponential distributions with finite mean and their applications to subordinated distributions 2010 Jianxi Lin