Monomial Crystals and Partition Crystals

Type: Article

Publication Date: 2010-04-21

Citations: 2

DOI: https://doi.org/10.3842/sigma.2010.035

Abstract

Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ 0 ) for sl n , where the vertices are indexed by certain partitions.He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal.Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

Locations

  • Symmetry Integrability and Geometry Methods and Applications - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DSpace@MIT (Massachusetts Institute of Technology) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Nakajima monomials and crystals for special linear Lie algebras 2005 Hyeonmi Lee
+ $(\ell,0)$-JM partitions and a ladder based model for the basic crystal of $\widehat{\mathfrak{sl}_\ell}$ 2009 Chris Berg
+ PDF Chat The Ladder Crystal 2009 Chris Berg
+ PDF Chat Nakajima Monomials and Crystals for Special Linear Lie Algebras 2007 Hyeonmi Lee
+ Monomial realization of crystals $\B(\infty)$ and $\B(\la)$ for special linear Lie algebras 2005 Hyeonmi Lee
+ PDF Chat Partition models for the crystal of the basic $U_{q}(\widehat {\mathfrak{sl}}_{n})$ -module 2010 Matthew Fayers
+ PDF Chat Combinatorial realizations of crystals via torus actions on quiver varieties 2013 Steven V Sam
Peter Tingley
+ Nakajima monomials, Young walls and Kashiwara embedding for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>U</mml:mi><mml:mi>q</mml:mi></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:msubsup><mml:mi>A</mml:mi><mml:mi>n</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msubsup><mml:mo stretchy="false">)</mml:mo></mml:math> 2010 Jeong-Ah Kim
Dong-Uy Shin
+ The crystal ℬ(∞) and extended Nakajima monomials 2009 Hyeonmi Lee
+ Young tableaux, Nakajima monomials, and crystals for special linear Lie algebras 2005 Hyeonmi Lee
+ Some results on the crystal commutor and affine sl(n) crystals 2008 Peter Tingley
+ PDF Chat Crystal Rules for $(\ell,0)$-JM Partitions 2010 Chris Berg
+ Modified Nakajima monomials and the crystal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>B</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo>∞</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math> 2006 Seok‐Jin Kang
Jeong-Ah Kim
Dong-Uy Shin
+ The ladder crystal 2009 Chris Berg
+ Kirillov-Reshetikhin crystals $B^{1,s}$ using Nakajima monomials for $\widehat{\mathfrak{sl}}_n$ 2016 Emily Gunawan
Travis Scrimshaw
+ Crystal constructions in Number Theory 2018 Anna Puskás
+ Lectures on geometric realizations of crystals 2010 Alistair Savage
+ Crystals, regularisation and the Mullineux map 2021 Matthew Fayers
+ PDF Chat Virtual Crystals and Nakajima Monomials 2018 Ben Salisbury
Travis Scrimshaw
+ PDF Chat Crystal Constructions in Number Theory 2019 Anna Puskás