The Liouville and the intersection properties are equivalent for planar graphs

Type: Article

Publication Date: 2012-01-01

Citations: 13

DOI: https://doi.org/10.1214/ecp.v17-1913

Abstract

It is shown that if a planar graph admits no non-constant bounded harmonic function then the trajectories of two independent simple random walks intersect almost surely.

Locations

  • arXiv (Cornell University) - View - PDF
  • Warwick Research Archive Portal (University of Warwick) - View - PDF
  • Electronic Communications in Probability - View - PDF

Similar Works

Action Title Year Authors
+ The Liouville and the intersection properties are equivalent for planar graphs 2012 Itaı Benjamini
Nicolas Curien
Agelos Georgakopoulos
+ PDF Chat Geodesics and Bounded Harmonic Functions on Infinite Planar Graphs 1991 S. Northshield
+ PDF Chat Geodesics and bounded harmonic functions on infinite planar graphs 1991 S. Northshield
+ Equivalence of zero entropy and the Liouville property for stationary random graphs 2015 Matí­as Piaggio
Pablo Lessa
+ Equivalence of zero entropy and the Liouville property for stationary random graphs 2015 Matí­as Piaggio
Pablo Lessa
+ Behaviour at Infinity and Harmonic Functions of Random Walks on Graphs 1991 Wolfgang Woess
+ Equivalence of zero entropy and the Liouville property for stationary random graphs 2016 Matí­as Piaggio
Pablo Lessa
+ A strong Liouville theorem for $p$-harmonic functions on graphs 1997 Ilkka Holopainen
Paolo M. Soardi
+ PDF Chat Random walks and harmonic functions on infinite planar graphs using square tilings 1996 Itaı Benjamini
Oded Schramm
+ PDF Chat Existence of the Harmonic Measure for Random Walks on Graphs and in Random Environments 2013 Daniel Boivin
Clément Rau
+ Liouville property and non-negative Ollivier curvature on graphs 2019 Jürgen Jost
Florentin Münch
Christian Rose
+ Intersections of Random Walks (Gregory F. Lawler) 1992 Richard Durrett
+ Intersection Properties of Simple Random Walks: A Renormalization Group Approach 1985 Giovanni Felder
Jürg Fröhlich
+ Planar Lebesgue Measure 1950 Nat G. Martin
+ Bounded Harmonic functions 2024
+ PDF Chat Computing $h$-functions of Some Planar Simply Connected Two-dimensional Regions 2023 M. Arunmaran
+ Harmonic Functions and Random Walks on Spheres 2013 Annie Brunelle
Emily Diana
Jeffrey Dzugan
Ryan Gallagher
Elisabeth Johnson
David Wegscheid
И.Н. Назаров
+ Intersections of Random Walks 2012 Gregory F. Lawler
+ PDF Chat The probability of intersection of independent random walks in four dimensions 1982 Gregory F. Lawler
+ Intersections of simple random walks 1985 Gregory F. Lawler