Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)

Type: Preprint

Publication Date: 2013-01-01

Citations: 226

DOI: https://doi.org/10.48550/arxiv.1306.2119

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression 2014 Francis Bach
+ Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression 2013 Francis Bach
+ Near-Optimal High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise. 2021 Eduard Gorbunov
Marina Danilova
Innokentiy Shibaev
Pavel Dvurechensky
Alexander Gasnikov
+ Exploiting Smoothness in Statistical Learning, Sequential Prediction, and Stochastic Optimization 2014 Mehrdad Mahdavi
+ PDF Chat An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes 2024 Antonio Orvieto
Lin Xiao
+ Simple Stochastic Gradient Methods for Non-Smooth Non-Convex Regularized Optimization 2019 Michael R. Metel
Akiko Takeda
+ Variance Reduction for Faster Non-Convex Optimization 2016 Zeyuan Allen-Zhu
Elad Hazan
+ Variance Reduction for Faster Non-Convex Optimization 2016 Zeyuan Allen-Zhu
Elad Hazan
+ Near-Optimal High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise 2021 Eduard Gorbunov
М. А. Данилова
Innokentiy Shibaev
Pavel Dvurechensky
Alexander Gasnikov
+ On the Local Minima of the Empirical Risk 2018 Chi Jin
Lydia T. Liu
Rong Ge
Michael I. Jordan
+ The Landscape of Empirical Risk for Non-convex Losses 2016 Mei Song
Yu Bai
Andrea Montanari
+ Empirical Risk Minimization for Stochastic Convex Optimization: $O(1/n)$- and $O(1/n^2)$-type of Risk Bounds 2017 Lijun Zhang
Tianbao Yang
Rong Jin
+ Empirical Risk Minimization for Stochastic Convex Optimization: $O(1/n)$- and $O(1/n^2)$-type of Risk Bounds 2017 Lijun Zhang
Tianbao Yang
Rong Jin
+ Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions 2018 Mingrui Liu
Xiaoxuan Zhang
Lijun Zhang
Rong Jin
Tianbao Yang
+ Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions 2018 Mingrui Liu
Xiaoxuan Zhang
Lijun Zhang
Rong Jin
Tianbao Yang
+ PDF Chat The Sample Complexity of Gradient Descent in Stochastic Convex Optimization 2024 Roi Livni
+ Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes 2012 Ohad Shamir
Tong Zhang
+ Noisy Linear Convergence of Stochastic Gradient Descent for CV@R Statistical Learning under Polyak-Łojasiewicz Conditions 2020 Dionysios S. Kalogerias
+ Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
+ Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright