Type: Article
Publication Date: 2016-01-14
Citations: 8
DOI: https://doi.org/10.1007/s00220-015-2557-8
We develop a non-relativistic twistor theory, in which Newton--Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle ${\mathcal O}\oplus{\mathcal O}(2)$. We show that the Newton--Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton--Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non--trivial on twistor lines. The resulting geometries agree with non--relativistic limits of anti-self-dual gravitational instantons.